I would like to hear some suggestion on implementing database solution for below problem
1) There are 100 million XML documents saved to the database per
day.
2) The database hold maximum 3 days of data
3) 1 million query request per day
4) The value through which the documents are filtered are stored in
a seperate table and mapped with the corresponding XMl document ID.
5) The documents are requested based on date range, documents
matching a list of ID's, Top 10 new documents, records that are new
after the previous request
Here is what I have done so far
1) Checked if I can use Redis, it is limited to few datatypes and
also cannot use multiple where conditions to filter the Hash in
Redis. Indexing based on date and lots of there fields. I am unable
to choose a right datastructure to store it on a hash
2) Investigated DynamoDB, its again a key vaue store where all the
filter conditions should be stored as one value. I am not sure if it
will be efficient querying a json document to filter the right XML
documnent.
3) Investigated Cassandra and it looks like it may fit my
requirement but it has a limitation saying that the read operations
might be slow. Cassandra has an advantage of faster write operation
over changing data. This looks like the best possible solition used
so far.
Currently we are using SQL server and there is a performance problem and so looking for a better solution.
Please suggest, thanks.
It's not that reads in Cassandra might be slow, but it's hard to guarantee SLA for reads (usually they will be fast, but then, some of them slow).
Cassandra doesn't have search capabilities which you may need in the future (ordering, searching by many fields, ranked searching). You can probably achieve that with Cassandra, but with obviously greater amount of effort than with a database suited for searching operations.
I suggest you looking at Lucene/Elasticsearch. Let me quote the features of Lucene from their main website:
Scalable
High-Performance Indexing
over 150GB/hour on modern hardware
small RAM requirements -- only 1MB heap
incremental indexing as fast as batch indexing
index size roughly 20-30% the size of text indexed
Powerful, Accurate and Efficient Search Algorithms
ranked searching -- best results returned first
many powerful query types: phrase queries, wildcard queries, proximity queries, range queries and more
fielded searching (e.g. title, author, contents)
sorting by any field
multiple-index searching with merged results
allows simultaneous update and searching
flexible faceting, highlighting, joins and result grouping
fast, memory-efficient and typo-tolerant suggesters
pluggable ranking models, including the Vector Space Model and Okapi BM25
configurable storage engine (codecs)
Related
This question is about choosing the type of database to run queries on for an application. Keeping other factors aside for the moment, and given that the choice is between mongodb and elastic, the key criterion is that the query should be resolved in near real time. The queries will be ad-hoc and as such can contain any of the fields in the JSON objects and will likely contain aggregations and subaggregations. Furthermore, there will not be nested objects and none of the fields will be containing 'descriptive' text (like movie reviews etc.), i.e., all the fields will be keyword type fields like State, Country, City, Name etc.
Now, I have read that elasticsearch performance is near real time and that elasticsearch uses inverted indices and creates them automatically for every field.
Given all the above, my questions are as follows.
(there is a similar question posted in stack but I do not think it answers my questions
elasticsearch v.s. MongoDB for filtering application)
1) Since the fields in the use case I mentioned do not contain descriptive text and hence would not require the full-text search capability and other additional features that elastic provides (especially for text search), what would be a better choice between elastic and mongo? How would elastic search and mongo query/aggregation performance compare if I were to create single field indices on all the available fields in mongo?
2) I am not familiar with advanced indexing, so I am assuming that it would be possible to create indices on all available fields in mongo (either using multiple single field indices or maybe compound indices?). I understand that this will come with a cost for storage and write speed which is true for elastic as well.
3) Also, in elastic the user can trade off write speed (indexing rate) with the speed with which the written document becomes available (refresh_interval) for a query. Is there a similar feature in mongo?
I think the size of your data set is also a very important aspect about choosing DB engine. According to this benckmark (2015), if you have over 10 millions of documents, Elasticsearch could be a better choice. If your data set is small there should be no obvious different about performance between Elasticsearch and MongoDB.
I have about 1000 sensors outputting data during the day. Each sensor outputs about 100,000 points per day. When I query the data I am only interested in getting data from a given sensor on a given day. I don t do any cross sensor queries. The timeseries are unevenly spaced and I need to keep the time resolution so I cannot do things like arrays of 1 point per second.
I plan to store data over many years. I wonder which scheme is the best:
each day/sensor pair corresponds to one collection, thus adding 1000 collections of about 100,000 documents each per day to my db
each sensor corresponds to a collection. I have a fixed number of 1000 collections that grow every day by about 100,000 documents each.
1 seems to intuitively be faster for querying. I am using mongoDb 3.4 which has no limit for the number of collections in a db.
2 seems cleaner but I am afraid the collections will become huge and that querying will gradually become slower as each collection grows
I am favoring 1 but I might be wrong. Any advice?
Update:
I followed the advice of
https://bluxte.net/musings/2015/01/21/efficient-storage-non-periodic-time-series-mongodb/
Instead of storing one document per measurement, I have a document containing 128 measurement,startDate,nextDate. It reduces the number of documents and thus the index size but I am still not sure how to organize the collections.
When I query data, I just want the data for a (date,sensor) pair, that is why I thought 1 might speed up the reads. I currently have about 20,000 collections in my DB and when I query the list of all collections, it takes ages which makes me think that it is not a good idea to have so many collections.
What do you think?
I would definitely recommend approach 2, for a number of reasons:
MongoDB's sharding is designed to cope with individual collections getting larger and larger, and copes well with splitting data within a collection across separate servers as required. It does not have the same ability to split data which exists in many collection across different servers.
MongoDB is designed to be able to efficiently query very large collections, even when the data is split across multiple servers, as long as you can pick a suitable shard key which matches your most common read queries. In your case, that would be sensor + date.
With approach 1, your application needs to do the fiddly job of knowing which collection to query, and (possibly) where that collection is to be found. Approach 2, with well-configured sharding, means that the mongos process does that hard work for you
Whilst MongoDB has no limit on collections I tried a similar approach to 2 but moved away from it to a single collection for all sensor values because it was more manageable.
Your planned data collection is significant. Have you considered ways to reduce the volume? In my system I compress same-value runs and only store changes, I can also reduce the volume by skipping co-linear midpoints and interpolating later when, say, I want to know what the value was at time 't'. Various different sensors may need different compression algorithms (e.g. a stepped sensor like a thermostat set-point vs one that represents a continuous quantity like a temperature). Having a single large collection also makes it easy to discard data when it does get too large.
If you can guarantee unique timestamps you may also be able to use the timestamp as the _id field.
When I query the data I m only interested in getting data from a
given sensor on a given day. I don t do any cross sensor queries.
But that's what exactly what Cassandra is good for!
See this article and this one.
Really, in one of our my projects we were stuck with legacy MongoDB and the scenario, similar to yours, with the except of new data amount per day was even lower.
We tried to change data structure, granulate data over multiple MongoDB collections, changed replica set configurations, etc.
But we were still disappointed as data increases, but performance degrades
with the unpredictable load and reading data request affects writing response much.
With Cassandra we had fast writes and data retrieving performance effect was visible with the naked eye. If you need complex data analysis and aggregation, you could always use Spark (Map-reduce) job.
Moreover, thinking about future, Cassandra provides straightforward scalability.
I believe that keeping something for legacy is good as long as it suits well, but if not, it's more effective to change the technology stack.
If I understand right, you plan to create collections on the fly, i.e. at 12 AM you will have new collections. I guess MongoDB is a wrong choice for this. If required in MongoDB there is no way you can query documents across collections, you will have to write complex mechanism to retrieve data. In my opinion, you should consider elasticsearch. Where you can create indices(Collections) like sensor-data-s1-3-14-2017. Here you could do a wildcard search across indices. (for eg: sensor-data-s1* or sensor-data-*). See here for wildcard search.
If you want to go with MongoDB my suggestion is to go with option 2 and shard the collections. While sharding, consider your query pattern so you could get optimal performance and that does not degrade over the period.
Approach #1 is not cool, key to speed up is divide (shard) and rule. What-if number of singal itself reaches 100000.
So place one signal in one collection and shard signals over nodes to speed up read. Multiple collections or signals can be on same node.
How this Will Assist
Usually for signal processing time-span is used like process signal for 3 days, in that case you can parallel read 3 nodes for the signal and do parallel apache spark processing.
Cross-Signal processing: typically most of signal processing algorithms uses same period for 2 or more signals for analysis like cross correlation and as these (2 or more signals) are parallel fetch it'll also be fast and ore-processing of individual signal can be parallelized.
First of all, I am using MongoDB 3.0 with the new WiredTiger storage engine. Also using snappy for compression.
The use case I am trying to understand and optimize for from a technical point of view is the following;
I have a fairly large collection, with about 500 million documents that takes about 180 GB including indexes.
Example document:
{
_id: 123234,
type: "Car",
color: "Blue",
description: "bla bla"
}
Queries consist of finding documents with a specific field value. Like so;
thing.find( { type: "Car" } )
In this example the type field should obviously be indexed. So far so good. However the access pattern for this data will be completely random. At a given time I have no idea what range of documents will be accessed. I only know that they will be queried on indexed fields, returning at the most 100000 documents at a time.
What this means in my mind is that the caching in MongoDB/WiredTiger is pretty much useless. The only thing that needs to fit in the cache are the indexes. An estimation of the working set is hard if not impossible?
What I am looking for is mostly tips on what kinds of indexes to use and how to configure MongoDB for this kind of use case. Would other databases work better?
Currently I find MongoDB to work quite well on somewhat limited hardware (16 GB RAM, non SSD disc). Queries return in decent time and obviously instantly if the result set is already in the cache. But as already stated this will most likely not be the typical case. It is not critical that the queries are lightning fast, more so that they are dependable and that the database will run in a stable manner.
EDIT:
Guess I left out some important things. The database will be mostly for archival purposes. As such, data arrives from another source in bulk, say once a day. Updates will be very rare.
The example I used was a bit contrived but in essence that is what queries look like. When I mentioned multiple indexes I meant the type and color fields in that example. So documents will be queried on using these fields. As it is now, we only care about returning all documents that have a specific type, color etc. Naturally, the plan we have is to only query on fields that we have an index for. So ad-hoc queries are off the table.
Right now the index sizes are quite manageable. For the 500 million documents each of these indexes are about 2.5GB and fit easily in RAM.
Regarding average data size of an operation, I can only speculate at this point. As far as I know, typical operations return about 20k documents, with an average object size in the range of 1200 bytes. This is the stat reported by db.stats() so I guess it is for the compressed data on disc, and not how much it actually takes once in RAM.
Hope this bit of extra info helped!
Basically, if you have a consistent rate of reads that are uniformly at random over type (which is what I'm taking
I have no idea what range of documents will be accessed
to mean), then you will see stable performance from the database. It will be doing some stable proportion of reads from cache, just by good luck, and another stable proportion by reading from disk, especially if the number and size of documents are about the same between different type values. I don't think there's a special index or anything to help you besides just better hardware. Indexes should remain in RAM because they'll constantly be being used.
I suppose more information would help, as you mention only one simple query on type but then talk about having multiple indexes to worry about keeping in RAM. How much data does the average operation return? Do you ever care to return a subset of docs of certain type or only all of them? What do inserts and updates to this collection look like?
Also, if the documents being read are truly completely random over the dataset, then the working set is all of the data.
Suppose that a tuple of four strings (date, name, type, price) is generated every 10 seconds. I'm writing a program in Python in order to store these tuples in disk for future use (only Read1). There are going to be millions of tuples, so the "insert" operation is crucial here. What's the best solution to this problem? SQLite, Postgres, MongoDB, or flat file?
1 I will read almost all the data in memory, from beginning to end. I don't need complex relational reads. For example, "SELECT price FROM table" is what I need. I won't use any indexes at all.
I would definitely recommend mongo. With indexes you can have very good performance on that set of data. With a flat file, you're going to have to manage all the complexities of a database system in your application logic (assuming you need this data with any form of urgency). If you add an index on the field you're looking to query, you should be fine in the performance category, especially when you're only in the millions of records range.
Greeting!
I have the following problem. I have a table with huge number of rows which I need to search and then group search results by many parameters. Let's say the table is
id, big_text, price, country, field1, field2, ..., fieldX
And we run a request like this
SELECT .... WHERE
[use FULLTEXT index to MATCH() big_text] AND
[use some random clauses that anyway render indexes useless,
like: country IN (1,2,65,69) and price<100]
This we be displayed as search results and then we need to take these search results and group them by a number of fields to generate search filters
(results) GROUP BY field1
(results) GROUP BY field2
(results) GROUP BY field3
(results) GROUP BY field4
This is a simplified case of what I need, the actual task at hand is even more problematic, for example sometimes the first results query does also its own GROUP BY. And example of such functionality would be this site
http://www.indeed.com/q-sales-jobs.html
(search results plus filters on the left)
I've done and still doing a deep research on how MySQL functions and at this point I totally don't see this possible in MySQL. Roughly speaking MySQL table is just a heap of rows lying on HDD and indexes are tiny versions of these tables sorted by the index field(s) and pointing to the actual rows. That's a super oversimplification of course but the point is I don't see how it is possible to fix this at all, i.e. how to use more than one index, be able to do fast GROUP BY-s (by the time query reaches GROUP BY index is completely useless because of range searches and other things). I know that MySQL (or similar databases) have various helpful things such index merges, loose index scans and so on but this is simply not adequate - the queries above will still take forever to execute.
I was told that the problem can be solved by NoSQL which makes use of some radically new ways of storing and dealing with data, including aggregation tasks. What I want to know is some quick schematic explanation of how it does this. I mean I just want to have a quick glimpse at it so that I could really see that it does that because at the moment I can't understand how it is possible to do that at all. I mean data is still data and has to be placed in memory and indexes are still indexes with all their limitation. If this is indeed possible, I'll then start studying NoSQL in detail.
PS. Please don't tell me to go and read a big book on NoSQL. I've already done this for MySQL only to find out that it is not usable in my case :) So I wanted to have some preliminary understanding of the technology before getting a big book.
Thanks!
There are essentially 4 types of "NoSQL", but three of the four are actually similar enough that an SQL syntax could be written on top of it (including MongoDB and it's crazy query syntax [and I say that even though Javascript is one of my favorite languages]).
Key-Value Storage
These are simple NoSQL systems like Redis, that are basically a really fancy hash table. You have a value you want to get later, so you assign it a key and stuff it into the database, you can only query a single object at a time and only by a single key.
You definitely don't want this.
Document Storage
This is one step up above Key-Value Storage and is what most people talk about when they say NoSQL (such as MongoDB).
Basically, these are objects with a hierarchical structure (like XML files, JSON files, and any other sort of tree structure in computer science), but the values of different nodes on the tree can be indexed. They have a higher "speed" relative to traditional row-based SQL databases on lookup because they sacrifice performance on joining.
If you're looking up data in your MySQL database from a single table with tons of columns (assuming it's not a view/virtual table), and assuming you have it indexed properly for your query (that may be you real problem, here), Document Databases like MongoDB won't give you any Big-O benefit over MySQL, so you probably don't want to migrate over for just this reason.
Columnar Storage
These are the most like SQL databases. In fact, some (like Sybase) implement an SQL syntax while others (Cassandra) do not. They store the data in columns rather than rows, so adding and updating are expensive, but most queries are cheap because each column is essentially implicitly indexed.
But, if your query can't use an index, you're in no better shape with a Columnar Store than a regular SQL database.
Graph Storage
Graph Databases expand beyond SQL. Anything that can be represented by Graph theory, including Key-Value, Document Database, and SQL database can be represented by a Graph Database, like neo4j.
Graph Databases make joins as cheap as possible (as opposed to Document Databases) to do this, but they have to, because even a simple "row" query would require many joins to retrieve.
A table-scan type query would probably be slower than a standard SQL database because of all of the extra joins to retrieve the data (which is stored in a disjointed fashion).
So what's the solution?
You've probably noticed that I haven't answered your question, exactly. I'm not saying "you're finished," but the real problem is how the query is being performed.
Are you absolutely sure you can't better index your data? There are things such as Multiple Column Keys that could improve the performance of your particular query. Microsoft's SQL Server has a full text key type that would be applicable to the example you provided, and PostgreSQL can emulate it.
The real advantage most NoSQL databases have over SQL databases is Map-Reduce -- specifically, the integration of a full Turing-complete language that runs at high speed that query constraints can be written in. The querying function can be written to quickly "fail out" of non-matching queries or quickly return with a success on records that meet "priority" requirements, while doing the same in SQL is a bit more cumbersome.
Finally, however, the exact problem you're trying to solve: text search with optional filtering parameters, is more generally known as a search engine, and there are very specialized engines to handle this particular problem. I'd recommend Apache Solr to perform these queries.
Basically, dump the text field, the "filter" fields, and the primary key of the table into Solr, let it index the text field, run the queries through it, and if you need the full record after that, query your SQL database for the specific index you got from Solr. It uses some more memory and requires a second process, but will probably best suite your needs, here.
Why all of this text to get to this answer?
Because the title of your question doesn't really have anything to do with the content of your question, so I answered both. :)