I'm using the DEVELOPMENT-SNAPSHOT-2016-06-06-a version of Swift. I cannot seem to get around this issue, I've tried using #noescape in various places, but I still have the following error:
Closure cannot implicitly capture a mutating self parameter
To better explain, here is a simple example:
public struct ExampleStruct {
let connectQueue = dispatch_queue_create("connectQueue", nil)
var test = 10
mutating func example() {
if let connectQueue = self.connectQueue {
dispatch_sync(connectQueue) {
self.test = 20 // error happens here
}
}
}
}
Something must have changed in these Swift binaries that is now causing my previously working code to break. A workaround I want to avoid is making my struct a class, which does help in fixing the issue. Let me know if there is another way.
I cannot test it, because I'm not using a build with that error, but I'm pretty sure by capturing self explicitly you can fix it:
dispatch_sync(connectQueue) { [self] in
self.test = 20
}
EDIT: Apparently it doesn't work, maybe you can try this (not very nice tbh):
var copy = self
dispatch_sync(connectQueue) {
copy.test = 20
}
self = copy
If you want to read more on why, here is the responsible Swift proposal.
The new dispatch API makes the sync method #noreturn so you wouldn't need the explicit capture:
connectQueue.sync {
test = 20
}
You are using Swift3 since you mentioned a recent dev snapshot of Swift. Try below and let me know if it works:
public struct ExampleStruct {
let connectQueue = DispatchQueue(label: "connectQueue", attributes: .concurrent)//This creates a concurrent Queue
var test = 10
mutating func example() {
connectQueue.sync {
self.test = 20
}
}
}
If you are interested in other types of queues, check these:
let serialQueue = DispatchQueue(label: "YOUR_QUEUE", attributes: .serial)
serialQueue.sync {
//
}
Get the mainQueue asynchronously and synchronously:
DispatchQueue.main.async {
//async operations
}
DispatchQueue.main.sync {
//sync operations
}
And if you are interested in Background:
DispatchQueue.global(attributes: .qosDefault).async {
//async operations
}
You could refer this for new features in Swift3 and for changes to existing version: Migrating to Swift 2.3 or Swift 3 from Swift 2.2
Related
I'm retrieving data from a website.
Networking works well. Data is parsed correctly from JSON.
A couple of references - In this struct:
Replies is the datamodel for the JSON
PrepareQuestions is a func which performs the parsing (I have it in an extension of the same Struct)
I'd like to have an object within this struct (downloadedData - 'Replies' is the struct with the datamodel) containing all the information downloaded, but I incur into an error due to "self being an immutable capture". Any suggestions? Thank you!
struct QuestionsManager {
var downloadedData:Replies?
func useData() {
manageQuestions(url: K.urlForRetreival, numberOfQuestions: K.numberOfSquares) { [self] (replies, error) in
if let replies = replies {
DispatchQueue.main.async {
downloadedData = replies // Here I got the error
}
}
}
}
func manageQuestions(url: String, numberOfQuestions: String, myCompletion: #escaping (Replies?, Error?)->()) {
let generatedUrl = URL(string: url + numberOfQuestions)!
let urlSession = URLSession(configuration: .default)
let task = urlSession.dataTask(with: generatedUrl) { (data, response, error) in
if error == nil {
if let fetchedData = data {
let fetchedProcessedData = prepareQuestions(data: fetchedData)
myCompletion(fetchedProcessedData, nil)
return
}
} else {
myCompletion(nil, error)
return
}
}
task.resume()
}
}
You're seeing this error because the closure captures an immutable self.
Just like primitive types (e.g. Int), structs are value-types, and Swift is built with the notion of immutability of value-types.
In other words, if you had let questionManager = QuestionManager(), you'd expect questionManager not to change. Even if it was a var, it can only mutate via direct action by the caller, e.g. questionManager.doMutatingFunc().
But, if a closure was allowed to capture self, it could modify itself at some later point. This is not allowed.
This simplest (only?) way to fix this is to turn QuestionManager into a class:
class QuestionManager {
// ...
}
struct is a value type. For value types, only methods explicitly
marked as mutating can modify the properties of self, so this is not
possible within a computed property.
If you change struct to be a class then your code compiles without
problems.
Structs are value types which means they are copied when they are
passed around.So if you change a copy you are changing only that copy,
not the original and not any other copies which might be around.If
your struct is immutable then all automatic copies resulting from
being passed by value will be the same.If you want to change it you
have to consciously do it by creating a new instance of the struct
with the modified data.
From https://stackoverflow.com/a/49253452/11734662
I'm relatively new to Swift and was wondering how I could achieve this exact thing.
I have a Swift process, and I want to toggle a flag on completion, and I have the following code:
task.terminationHandler = { process in
isTaskComplete.toggle()
}
I have this exact code duplicated in various views and was trying to convert it to a function, with my first attempt of referencing the isTaskComplete flag by using inout.
However, because terminationHandler itself defines the parameters of the closure it takes, there is no way for me to attach a secondary inout parameter. I was wondering if there was any way for me to reference the flag inside the closure and have the value be referenced?
For what it's worth in using Swift 5 and Xcode 11.5.
Any help will be greatly appreciated! Thanks :)
You can use protocols and protocol extensions for that.
protocol NameYourProtocol {
var task: TypeOfTask { get } // { get set } If you need
var isTaskComplete: Bool { get }
}
extension NameYourProtocol {
func handleTermination() {
task.terminationHandler = { process in
isTaskComplete.toggle()
}
}
}
And this is what you will do in every class you need to call it:
class Worker: NameYourProtocol {
// This will be required by protocol.
var task = TypeOfTask()
var isTaskComplete = false
init() {
// Call `handleTermination` where you need to.
handleTermination()
}
}
I'm trying to write a wrapper around URLSessionTask in Swift. According to the documentation
All task properties support key-value observing.
So I want to keep this behavior and make all the properties on my wrapper also KVO-compliant (usually delegating to the wrapped task) and fully accessible to Objective-C. I'll describe what I'm doing with one property, but I basically want to do the same thing for all properties.
Let's take the property state of URLSessionTask. I create my wrapper like this:
#objc(MyURLSessionTask)
public class TaskWrapper: NSObject {
#objc public internal(set) var underlyingTask: URLSessionTask?
#objc dynamic public var state: URLSessionTask.State {
return underlyingTask?.state ?? backupState
}
// the state to be used when we don't have an underlyingTask
#objc dynamic private var backupState: URLSessionTask.State = .suspended
#objc public func resume() {
if let task = underlyingTask {
task.resume()
return
}
dispatchOnBackgroundQueue {
let task:URLSessionTask = constructTask()
task.resume()
self.underlyingTask = task
}
}
}
I added #objc to the properties so they are available to be called from Objective-C. And I added dynamic to the properties so they will be called via message-passing/the runtime even from Swift, to make sure the correct KVO-Notifications can be generated by NSObject. This is supposed to be enough according to Apple's KVO chapter in the "Using Swift with Cocoa and Objective-C" book.
I then implemented the static class methods necessary to tell KVO about dependent key paths:
// MARK: KVO Support
extension TaskWrapper {
#objc static var keyPathsForValuesAffectingState:Set<String> {
let keypaths:Set<String> = [
#keyPath(TaskWrapper.backupState),
#keyPath(TaskWrapper.underlyingTask.state)
]
return keypaths
}
}
Then I wrote a unit test to check whether the notifications are called correctly:
var swiftKVOObserver:NSKeyValueObservation?
func testStateObservation() {
let taskWrapper = TaskWrapper()
let objcKVOExpectation = keyValueObservingExpectation(for: taskWrapper, keyPath: #keyPath(TaskWrapper.state), handler: nil)
let swiftKVOExpectation = expectation(description: "Expect Swift KVO call for `state`-change")
swiftKVOObserver = taskWrapper.observe(\.state) { (_, _) in
swiftKVOExpectation.fulfill()
}
// this should trigger both KVO versions
taskWrapper.underlyingTask = URLSession(configuration: .default).dataTask(with: url)
self.wait(for: [swiftKVOExpectation, objcKVOExpectation], timeout: 0.1)
}
When I run it, the test crashes with an NSInternalInconsistencyException:
*** Terminating app due to uncaught exception 'NSInternalInconsistencyException', reason: 'Cannot remove an observer <_XCKVOExpectationImplementation 0x60000009d6a0> for the key path "underlyingTask.state" from < MyURLSessionTask 0x6000002a1440>, most likely because the value for the key "underlyingTask" has changed without an appropriate KVO notification being sent. Check the KVO-compliance of the MyURLSessionTask class.'
But by making the underlyingTask-property #objc and dynamic, the Objective-C runtime should ensure that this notification is sent, even when the task is changed from Swift, right?
I can make the test work correctly by sending the KVO-notifications for the underlyingTask manually like this:
#objc public internal(set) var underlyingTask: URLSessionTask? {
willSet {
willChangeValue(for: \.underlyingTask)
}
didSet {
didChangeValue(for: \.underlyingTask)
}
}
But I'd much rather avoid having to implement this for every property and would prefer to use the existing keyPathsForValuesAffecting<Key> methods. Am I missing something to make this work? Or should it work and this is a bug?
Property underlyingTask isn't dynamic.
What is the simplest way to write a piece of code that can be executed only once?
I know a way but has a problem.
first, I write a Boolean variable that has negative value but can be set to positive and cannot change after that
var hasTheFunctionCalled : Bool = false {
didSet{
hasTheFunctionCalled = true
}
}
and then write the function and the code inside it:
func theFunction(){
if !hasTheFunctionCalled{
//do the thing
}
hasTheFunctionCalled = true
}
but the problem is that the variable can be changed from somewhere else in the scope and this solution doesn't really look so simple and concrete.
A simple solution is to take advantage of lazy variables in the following way:
// Declare your "once-only" closure like this
private lazy var myFunction: Void = {
// Do something once
}()
...
// Then to execute it, just call
_ = myFunction
This ensures that the code inside the myFunction closure is only executed the first time that the program runs _ = myFunction
Edit: Another approach is to use so called "dispatch once tokens". This comes from Objective-C and was available in Swift until Swift 3. It is still possible to make it work, however you will need to add a little bit of custom code. You can find more information on this post -> dispatch_once after the Swift 3 GCD API changes
Edit2: Should be _ = myFunction and not _ = myFunction(), as JohnMontgomery pointed out.
You might use a static bool inside a struct nested into the function itself doing so:
func theFunction(){
struct Holder { static var called = false }
if !Holder.called {
Holder.called = true
//do the thing
}
}
One possible technique is to put the code into the initializer of a static type property, which is guaranteed to be lazily initialized only once (even when accessed across multiple threads simultaneously):
func theFunction() {
struct Once {
static let once = Once()
init() {
print("This should be executed only once during the lifetime of the program")
}
}
_ = Once.once
}
(Compare Singleton in the "Using Swift with Cocoa and Objective-C" reference.)
Example:
print("Call #1")
theFunction()
print("Call #2")
theFunction()
print("Done")
Output:
Call #1
This should be executed only once during the lifetime of the program
Call #2
Done
You can do smth like:
class Once {
var already: Bool = false
func run(#noescape block: () -> Void) {
guard !already else { return }
block()
already = true
}
}
and than use it like
class ViewController: UIViewController {
let once = Once()
override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)
once.run {
cameraMan.setup()
}
}
}
ref: https://dev.to/onmyway133/how-to-run-action-once-in-swift-3k7o
Depending on what you are doing inside your method : you may check if the end result has already been accomplished :
e.g. if you instantiate a class, check if it is different from nil
You can also use UserDefaults, and the knowledge that the default UserDefault Bool is false:
if !UserDefaults.standard.bool(forKey: "ExecuteOnce") {
func()
UserDefaults.standard.set(true, forKey: "ExecuteOnce")
}
This code will execute exactly once.
I've inherited some Swift 3 code which uses RxSwift to manage a store. The basic layout of the class is:
class UserActivityStore {
fileprivate lazy var internalDataCache: Variable<Set<NSUserActivity>?> = Variable(nil)
func addAction(_ actionToAdd: NSUserActivity) {
var content = internalDataCache.value ?? Set<NSUserActivity>()
content.insert(actionToAdd)
internalDataCache.value = content
}
func resolveAction(_ action: NSUserActivity) {
var content = internalDataCache.value
_ = content?.remove(action)
internalDataCache.value = content
}
func expectActions(_ filter: #escaping ((NSUserActivity) -> Bool)) -> Observable<NSUserActivity> {
let observable = Observable<NSUserActivity>.create { (observer) -> Disposable in
return self.internalDataCache.asObservable().subscribeNext { (newActions) in
guard let newActions = newActions else { return }
for eachAction in newActions where filter(eachAction) {
observer.onNext(eachAction)
self.resolveAction(eachAction)
}
}
}
return observable
}
}
When an action is added to this, it adds the item to the set correctly. However, the observer (in expectActions) catches that change and resolves it. Since this is all in a single thread, the error "Warning: Recursive call or synchronization error!" is triggered.
I think this is a perfectly legitimate error and that RxSwift is probably correct in its handling. However, I can't help thinking that this is a bad model. The code is essentially handling a queue of NSUserActivity objects itself.
Is this genuinely a modelling error / abuse of RxSwift or is my limited understanding of RxSwift misunderstanding this? As a hacky solution, I've tried replacing the resolveAction function with a single line internalDataCache.value?.remove(action) but that still triggers the observable and hence the bug.
Changing the observable to use a different queue (Serial or Concurrent dispatch) fixes the problem but I'm not convinced its the correct fix.