Kotlin zipAll alternative - scala

Does Kotlin have a function like .zipAll in Scala?
In Scala I can sum two array with different length using the zipAll function.
Scala:
val arrA = Array(1,2,3)
val arrB = Array(4, 5)
arrA.zipAll(arrB, 0, 0).map(x => x._1 + x._2)
Or what is the correct way to do this in Kotlin?

There is no in-build analog in Kotlin 1.0. It might be a good idea to add it into the stdlib. Feel free to file an issue on the YouTrack

Here is zipAll for Kotlin:
fun <T1: Any, T2: Any> List<T1>.zipAll(other: List<T2>, emptyValue: T1, otherEmptyValue: T2): List<Pair<T1, T2>> {
val i1 = this.iterator()
val i2 = other.iterator()
return generateSequence {
if (i1.hasNext() || i2.hasNext()) {
Pair(if (i1.hasNext()) i1.next() else emptyValue,
if (i2.hasNext()) i2.next() else otherEmptyValue)
} else {
null
}
}.toList()
}
And a unit test:
#Test fun sumTwoUnevenLists() {
val x = listOf(1,2,3,4,5)
val y = listOf(10,20,30)
assertEquals(listOf(11,22,33,4,5), x.zipAll(y, 0, 0).map { it.first + it.second })
}
And the same could be applied to arrays, other collection types, sequences, etc. An array-only version would be easier since you can index into the arrays. The array version could be:
fun <T1: Any, T2: Any> Array<T1>.zipAll(other: Array<T2>, emptyValue: T1, otherEmptyValue: T2): List<Pair<T1, T2>> {
val largest = this.size.coerceAtLeast(other.size)
val result = arrayListOf<Pair<T1, T2>>()
(0..this.size.coerceAtLeast(other.size)-1).forEach { i ->
result.add(Pair(if (i < this.size) this[i] else emptyValue, if (i < other.size) other[i] else otherEmptyValue))
}
return result.filterNotNull()
}
It returns a List because map function is going to turn you into a list anyway.

I made a quick tail-recursive version for fun. Not very efficient though, due to the list appends.
fun <T, U> List<T>.zipAll(that: List<U>, elem1: T, elem2: U): List<Pair<T, U>> {
tailrec fun helper(first: List<T>, second: List<U>, acc: List<Pair<T, U>>): List<Pair<T, U>> {
return when {
first.isEmpty() && second.isEmpty() -> acc
first.isEmpty() -> helper(first, second.drop(1), acc + listOf(elem1 to second.first()))
second.isEmpty() -> helper(first.drop(1), second, acc + listOf(first.first() to elem2))
else -> helper(first.drop(1), second.drop(1), acc + listOf(first.first() to second.first()))
}
}
return helper(this, that, emptyList())
}

This does not yet exist in the Koltin stdlib, but this is the suggested approach I posted in the youtrack ticket about this.
Here is a potential implementation modeled after the current zip function https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/zip.html.
/**
* Returns a list of values built from the elements of `this` collection and the [other] collection with the same
* index using the provided [transform] function applied to each pair of elements. The returned list has length of
* the longest collection.
*/
fun <T, R, V> Iterable<T>.zipAll(
other: Iterable<R>,
thisDefault: T,
otherDefault: R,
transform: (a: T, b: R) -> V,
): List<V> {
val first = iterator()
val second = other.iterator()
val list = ArrayList<V>(maxOf(collectionSizeOrDefault(10),
other.collectionSizeOrDefault(10)))
while (first.hasNext() || second.hasNext()) {
val thisValue = if (first.hasNext()) first.next() else thisDefault
val otherValue =
if (second.hasNext()) second.next() else otherDefault
list.add(transform(thisValue, otherValue))
}
return list
}
// Copying this from kotlin.collections where it is an Internal function
fun <T> Iterable<T>.collectionSizeOrDefault(default: Int): Int =
if (this is Collection<*>) this.size else default
And here is how I use it
/**
* Takes two multiline stings and combines them into a two column view.
*/
fun renderSideBySide(
leftColumn: String,
rightColumn: String,
divider: String = " | ",
): String {
val leftColumnWidth: Int = leftColumn.lines().map { it.length }.maxOrNull() ?: 0
return leftColumn.lines()
.zipAll(rightColumn.lines(), "", "") { left, right ->
left.padEnd(leftColumnWidth) + divider + right
}
.reduce { acc, nextLine -> acc + "\n" + nextLine }
}
Example of how I am using this:
val left = """
Left Column
with some data
""".trimIndent()
val right = """
Right Column
also with some data
but not the same length
of data as the left colum.
""".trimIndent()
println(left)
Left Column
with some data
println(right)
Right Column
also with some data
but not the same length
of data as the left colum.
println(renderSideBySide(left,right))
Left Column | Right Column
with some data | also with some data
| but not the same length
| of data as the left colum.
println(renderSideBySide(right,left))
Right Column | Left Column
also with some data | with some data
but not the same length |
of data as the left colum. |

Related

Scala count number of times function returns each value, functionally

I want to count up the number of times that a function f returns each value in it's range (0 to f_max, inclusive) when applied to a given list l, and return the result as an array, in Scala.
Currently, I accomplish as follows:
def count (l: List): Array[Int] = {
val arr = new Array[Int](f_max + 1)
l.foreach {
el => arr(f(el)) += 1
}
return arr
}
So arr(n) is the number of times that f returns n when applied to each element of l. This works however, it is imperative style, and I am wondering if there is a clean way to do this purely functionally.
Thank you
how about a more general approach:
def count[InType, ResultType](l: Seq[InType], f: InType => ResultType): Map[ResultType, Int] = {
l.view // create a view so we don't create new collections after each step
.map(f) // apply your function to every item in the original sequence
.groupBy(x => x) // group the returned values
.map(x => x._1 -> x._2.size) // count returned values
}
val f = (i:Int) => i
count(Seq(1,2,3,4,5,6,6,6,4,2), f)
l.foldLeft(Vector.fill(f_max + 1)(0)) { (acc, el) =>
val result = f(el)
acc.updated(result, acc(result) + 1)
}
Alternatively, a good balance of performance and external purity would be:
def count(l: List[???]): Vector[Int] = {
val arr = l.foldLeft(Array.fill(f_max + 1)(0)) { (acc, el) =>
val result = f(el)
acc(result) += 1
}
arr.toVector
}

How to aggregateByKey with custom class for frequency distribution?

I am trying to create a frequency distribution.
My data is in the following pattern (ColumnIndex, (Value, countOfValue)) of type (Int, (Any, Long)). For instance, (1, (A, 10)) means for column index 1, there are 10 A's.
My goal is to get the top 100 values for all my index's or Keys.
Right away I can make it less compute intensive for my workload by doing an initial filter:
val freqNumDist = numRDD.filter(x => x._2._2 > 1)
Now I found an interesting example of a class, here which seems to fit my use case:
class TopNList (val maxSize:Int) extends Serializable {
val topNCountsForColumnArray = new mutable.ArrayBuffer[(Any, Long)]
var lowestColumnCountIndex:Int = -1
var lowestValue = Long.MaxValue
def add(newValue:Any, newCount:Long): Unit = {
if (topNCountsForColumnArray.length < maxSize -1) {
topNCountsForColumnArray += ((newValue, newCount))
} else if (topNCountsForColumnArray.length == maxSize) {
updateLowestValue
} else {
if (newCount > lowestValue) {
topNCountsForColumnArray.insert(lowestColumnCountIndex, (newValue, newCount))
updateLowestValue
}
}
}
def updateLowestValue: Unit = {
var index = 0
topNCountsForColumnArray.foreach{ r =>
if (r._2 < lowestValue) {
lowestValue = r._2
lowestColumnCountIndex = index
}
index+=1
}
}
}
So Now What I was thinking was putting together an aggregateByKey to use this class in order to get my top 100 values! The problem is that I am unsure of how to use this class in aggregateByKey in order to accomplish this goal.
val initFreq:TopNList = new TopNList(100)
def freqSeq(u: (TopNList), v:(Double, Long)) = (
u.add(v._1, v._2)
)
def freqComb(u1: TopNList, u2: TopNList) = (
u2.topNCountsForColumnArray.foreach(r => u1.add(r._1, r._2))
)
val freqNumDist = numRDD.filter(x => x._2._2 > 1).aggregateByKey(initFreq)(freqSeq, freqComb)
The obvious problem is that nothing is returned by the functions I am using. So I am wondering how to modify this class or do I need to think about this in a whole new light and just cherry pick some of the functions out of this class and add them to the functions I am using for the aggregateByKey?
I'm either thinking about classes wrong or the entire aggregateByKey or both!
Your projections implementations (freqSeq, freqComb) return Unit while you expect them to return TopNList
If intentially keep the style of your solution, the relevant impl should be
def freqSeq(u: TopNList, v:(Any, Long)) : TopNList = {
u.add(v._1, v._2) // operation gives void result (Unit)
u // this one of TopNList type
}
def freqComb(u1: TopNList, u2: TopNList) : TopNList = {
u2.topNCountsForColumnArray.foreach (r => u1.add (r._1, r._2) )
u1
}
Just take a look on aggregateByKey signature of PairRDDFunctions, what does it expect for
def aggregateByKey[U](zeroValue : U)(seqOp : scala.Function2[U, V, U], combOp : scala.Function2[U, U, U])(implicit evidence$3 : scala.reflect.ClassTag[U]) : org.apache.spark.rdd.RDD[scala.Tuple2[K, U]] = { /* compiled code */ }

Union-Find (or Disjoint Set) data structure in Scala

I am looking for an existing implementation of a union-find or disjoint set data structure in Scala before I attempt to roll my own as the optimisations look somewhat complicated.
I mean this kind of thing - where the two operations union and find are optimised.
Does anybody know of anything existing? I've obviously tried googling around.
I had written one for myself some time back which I believe performs decently. Unlike other implementations, the find is O(1) and union is O(log(n)). If you have a lot more union operations than find, then this might not be very useful. I hope you find it useful:
package week2
import scala.collection.immutable.HashSet
import scala.collection.immutable.HashMap
/**
* Union Find implementaion.
* Find is O(1)
* Union is O(log(n))
* Implementation is using a HashTable. Each wrap has a set which maintains the elements in that wrap.
* When 2 wraps are union, then both the set's are clubbed. O(log(n)) operation
* A HashMap is also maintained to find the Wrap associated with each node. O(log(n)) operation in mainitaining it.
*
* If the input array is null at any index, it is ignored
*/
class UnionFind[T](all: Array[T]) {
private var dataStruc = new HashMap[T, Wrap]
for (a <- all if (a != null))
dataStruc = dataStruc + (a -> new Wrap(a))
var timeU = 0L
var timeF = 0L
/**
* The number of Unions
*/
private var size = dataStruc.size
/**
* Unions the set containing a and b
*/
def union(a: T, b: T): Wrap = {
val st = System.currentTimeMillis()
val first: Wrap = dataStruc.get(a).get
val second: Wrap = dataStruc.get(b).get
if (first.contains(b) || second.contains(a))
first
else {
// below is to merge smaller with bigger rather than other way around
val firstIsBig = (first.set.size > second.set.size)
val ans = if (firstIsBig) {
first.set = first.set ++ second.set
second.set.foreach(a => {
dataStruc = dataStruc - a
dataStruc = dataStruc + (a -> first)
})
first
} else {
second.set = second.set ++ first.set
first.set.foreach(a => {
dataStruc = dataStruc - a
dataStruc = dataStruc + (a -> second)
})
second
}
timeU = timeU + (System.currentTimeMillis() - st)
size = size - 1
ans
}
}
/**
* true if they are in same set. false if not
*/
def find(a: T, b: T): Boolean = {
val st = System.currentTimeMillis()
val ans = dataStruc.get(a).get.contains(b)
timeF = timeF + (System.currentTimeMillis() - st)
ans
}
def sizeUnion: Int = size
class Wrap(e: T) {
var set = new HashSet[T]
set = set + e
def add(elem: T) {
set = set + elem
}
def contains(elem: T): Boolean = set.contains(elem)
}
}
Here is a simple, short and somewhat efficient mutable implementation of UnionFind:
import scala.collection.mutable
class UnionFind[T]:
private val map = new mutable.HashMap[T, mutable.HashSet[T]]
private var size = 0
def distinct = size
def addFresh(a: T): Unit =
assert(!map.contains(a))
val set = new mutable.HashSet[T]
set += a
map(a) = set
size += 1
def setEqual(a: T, b: T): Unit =
val ma = map(a)
val mb = map(b)
if !ma.contains(b) then
// redirect the elements of the smaller set to the bigger set
if ma.size > mb.size
then
ma ++= mb
mb.foreach { x => map(x) = ma }
else
mb ++= ma
ma.foreach { x => map(x) = mb }
size = size - 1
def isEqual(a: T, b: T): Boolean =
map(a).contains(b)
Remarks:
An immutable implementation of UnionFind can be useful when rollback or backtracking or proofs are necessary
An mutable implementation can avoid garbage collection for speedup
One could also consider a persistent datastructure -- works like an immutable implementation, but is using internally some mutable state for speed

workaround for prepending to a LinkedHashMap in Scala?

I have a LinkedHashMap which I've been using in a typical way: adding new key-value
pairs to the end, and accessing them in order of insertion. However, now I have a
special case where I need to add pairs to the "head" of the map. I think there's
some functionality inside the LinkedHashMap source for doing this, but it has private
accessibility.
I have a solution where I create a new map, add the pair, then add all the old mappings.
In Java syntax:
newMap.put(newKey, newValue)
newMap.putAll(this.map)
this.map = newMap
It works. But the problem here is that I then need to make my main data structure
(this.map) a var rather than a val.
Can anyone think of a nicer solution? Note that I definitely need the fast lookup
functionality provided by a Map collection. The performance of a prepending is not
such a big deal.
More generally, as a Scala developer how hard would you fight to avoid a var
in a case like this, assuming there's no foreseeable need for concurrency?
Would you create your own version of LinkedHashMap? Looks like a hassle frankly.
This will work but is not especially nice either:
import scala.collection.mutable.LinkedHashMap
def prepend[K,V](map: LinkedHashMap[K,V], kv: (K, V)) = {
val copy = map.toMap
map.clear
map += kv
map ++= copy
}
val map = LinkedHashMap('b -> 2)
prepend(map, 'a -> 1)
map == LinkedHashMap('a -> 1, 'b -> 2)
Have you taken a look at the code of LinkedHashMap? The class has a field firstEntry, and just by taking a quick peek at updateLinkedEntries, it should be relatively easy to create a subclass of LinkedHashMap which only adds a new method prepend and updateLinkedEntriesPrepend resulting in the behavior you need, e.g. (not tested):
private def updateLinkedEntriesPrepend(e: Entry) {
if (firstEntry == null) { firstEntry = e; lastEntry = e }
else {
val oldFirstEntry = firstEntry
firstEntry = e
firstEntry.later = oldFirstEntry
oldFirstEntry.earlier = e
}
}
Here is a sample implementation I threw together real quick (that is, not thoroughly tested!):
class MyLinkedHashMap[A, B] extends LinkedHashMap[A,B] {
def prepend(key: A, value: B): Option[B] = {
val e = findEntry(key)
if (e == null) {
val e = new Entry(key, value)
addEntry(e)
updateLinkedEntriesPrepend(e)
None
} else {
// The key already exists, so we might as well call LinkedHashMap#put
put(key, value)
}
}
private def updateLinkedEntriesPrepend(e: Entry) {
if (firstEntry == null) { firstEntry = e; lastEntry = e }
else {
val oldFirstEntry = firstEntry
firstEntry = e
firstEntry.later = oldFirstEntry
oldFirstEntry.earlier = firstEntry
}
}
}
Tested like this:
object Main {
def main(args:Array[String]) {
val x = new MyLinkedHashMap[String, Int]();
x.prepend("foo", 5)
x.prepend("bar", 6)
x.prepend("olol", 12)
x.foreach(x => println("x:" + x._1 + " y: " + x._2 ));
}
}
Which, on Scala 2.9.0 (yeah, need to update) results in
x:olol y: 12
x:bar y: 6
x:foo y: 5
A quick benchmark shows order of magnitude in performance difference between the extended built-in class and the "map rewrite" approach (I used the code from Debilski's answer in "ExternalMethod" and mine in "BuiltIn"):
benchmark length us linear runtime
ExternalMethod 10 1218.44 =
ExternalMethod 100 1250.28 =
ExternalMethod 1000 19453.59 =
ExternalMethod 10000 349297.25 ==============================
BuiltIn 10 3.10 =
BuiltIn 100 2.48 =
BuiltIn 1000 2.38 =
BuiltIn 10000 3.28 =
The benchmark code:
def timeExternalMethod(reps: Int) = {
var r = reps
while(r > 0) {
for(i <- 1 to 100) prepend(map, (i, i))
r -= 1
}
}
def timeBuiltIn(reps: Int) = {
var r = reps
while(r > 0) {
for(i <- 1 to 100) map.prepend(i, i)
r -= 1
}
}
Using a scala benchmarking template.

How can I make this method more Scalalicious

I have a function that calculates the left and right node values for some collection of treeNodes given a simple node.id, node.parentId association. It's very simple and works well enough...but, well, I am wondering if there is a more idiomatic approach. Specifically is there a way to track the left/right values without using some externally tracked value but still keep the tasty recursion.
/*
* A tree node
*/
case class TreeNode(val id:String, val parentId: String){
var left: Int = 0
var right: Int = 0
}
/*
* a method to compute the left/right node values
*/
def walktree(node: TreeNode) = {
/*
* increment state for the inner function
*/
var c = 0
/*
* A method to set the increment state
*/
def increment = { c+=1; c } // poo
/*
* the tasty inner method
* treeNodes is a List[TreeNode]
*/
def walk(node: TreeNode): Unit = {
node.left = increment
/*
* recurse on all direct descendants
*/
treeNodes filter( _.parentId == node.id) foreach (walk(_))
node.right = increment
}
walk(node)
}
walktree(someRootNode)
Edit -
The list of nodes is taken from a database. Pulling the nodes into a proper tree would take too much time. I am pulling a flat list into memory and all I have is an association via node id's as pertains to parents and children.
Adding left/right node values allows me to get a snapshop of all children (and childrens children) with a single SQL query.
The calculation needs to run very quickly in order to maintain data integrity should parent-child associations change (which they do very frequently).
In addition to using the awesome Scala collections I've also boosted speed by using parallel processing for some pre/post filtering on the tree nodes. I wanted to find a more idiomatic way of tracking the left/right node values. After looking at the answer from #dhg it got even better. Using groupBy instead of a filter turns the algorithm (mostly?) linear instead of quadtratic!
val treeNodeMap = treeNodes.groupBy(_.parentId).withDefaultValue(Nil)
def walktree(node: TreeNode) = {
def walk(node: TreeNode, counter: Int): Int = {
node.left = counter
node.right =
treeNodeMap(node.id)
.foldLeft(counter+1) {
(result, curnode) => walk(curnode, result) + 1
}
node.right
}
walk(node,1)
}
Your code appears to be calculating an in-order traversal numbering.
I think what you want to make your code better is a fold that carries the current value downward and passes the updated value upward. Note that it might also be worth it to do a treeNodes.groupBy(_.parentId) before walktree to prevent you from calling treeNodes.filter(...) every time you call walk.
val treeNodes = List(TreeNode("1","0"),TreeNode("2","1"),TreeNode("3","1"))
val treeNodeMap = treeNodes.groupBy(_.parentId).withDefaultValue(Nil)
def walktree2(node: TreeNode) = {
def walk(node: TreeNode, c: Int): Int = {
node.left = c
val newC =
treeNodeMap(node.id) // get the children without filtering
.foldLeft(c+1)((c, child) => walk(child, c) + 1)
node.right = newC
newC
}
walk(node, 1)
}
And it produces the same result:
scala> walktree2(TreeNode("0","-1"))
scala> treeNodes.map(n => "(%s,%s)".format(n.left,n.right))
res32: List[String] = List((2,7), (3,4), (5,6))
That said, I would completely rewrite your code as follows:
case class TreeNode( // class is now immutable; `walktree` returns a new tree
id: String,
value: Int, // value to be set during `walktree`
left: Option[TreeNode], // recursively-defined structure
right: Option[TreeNode]) // makes traversal much simpler
def walktree(node: TreeNode) = {
def walk(nodeOption: Option[TreeNode], c: Int): (Option[TreeNode], Int) = {
nodeOption match {
case None => (None, c) // if this child doesn't exist, do nothing
case Some(node) => // if this child exists, recursively walk
val (newLeft, cLeft) = walk(node.left, c) // walk the left side
val newC = cLeft + 1 // update the value
val (newRight, cRight) = walk(node.right, newC) // walk the right side
(Some(TreeNode(node.id, newC, newLeft, newRight)), cRight)
}
}
walk(Some(node), 0)._1
}
Then you can use it like this:
walktree(
TreeNode("1", -1,
Some(TreeNode("2", -1,
Some(TreeNode("3", -1, None, None)),
Some(TreeNode("4", -1, None, None)))),
Some(TreeNode("5", -1, None, None))))
To produce:
Some(TreeNode(1,4,
Some(TreeNode(2,2,
Some(TreeNode(3,1,None,None)),
Some(TreeNode(4,3,None,None)))),
Some(TreeNode(5,5,None,None))))
If I get your algorithm correctly:
def walktree(node: TreeNode, c: Int): Int = {
node.left = c
val c2 = treeNodes.filter(_.parentId == node.id).foldLeft(c + 1) {
(cur, n) => walktree(n, cur)
}
node.right = c2 + 1
c2 + 2
}
walktree(new TreeNode("", ""), 0)
Off-by-one errors are likely to occur.
Few random thoughts (better suited for http://codereview.stackexchange.com):
try posting that compiles... We have to guess that is a sequence of TreeNode:
val is implicit for case classes:
case class TreeNode(val id: String, val parentId: String) {
Avoid explicit = and Unit for Unit functions:
def walktree(node: TreeNode) = {
def walk(node: TreeNode): Unit = {
Methods with side-effects should have ():
def increment = {c += 1; c}
This is terribly slow, consider storing list of children in the actual node:
treeNodes filter (_.parentId == node.id) foreach (walk(_))
More concice syntax would be treeNodes foreach walk:
treeNodes foreach (walk(_))