Static method and constructor interception mocking in Scala/Spark - scala

All, Here is a problem that my searches have yielded little insight into. I think this should be a fairly common problem for all of us developing against big data frameworks but also seek 100% test coverage. So I will post the question here in an attempt to gather the best community response & ideas.
Consider the scenario where we need to mock a class that instantiate an external API object
class SolrClientWrapper {
def doWork() = {
val cli = new CloudSolrClient("zkHost1")
???
}
}
To get 100% test coverage, and without actually relying on the Solr server to be up at all times during unit testing, we shall have a way to intercept the call to new CloudSolrClient. As far as I know, the ONLY library available is PowerMock
Here is The Twist
PowerMock and other Mock libraries require asm as a dependency, but a complex framework Spark project also require asm. There are version conflicts and thus (test-)runtime hell.
What is the best design refactor/libraries for this situation?

Instead of creating a new CloudSolrClient object within the SolrClientWrapper class, it should be passed as a dependency. Then in your test you can pass a mock instead of the real object. Note that there are many dependency injection frameworks and mechanisms that can make it easier for you to manage your dependencies (e.g. to automatically instantiate them and pass to the constructor for you).
Not sure what asm is, but the code you posted should be easily testable without such dependencies once you remove parts of the code that instantiate stuff inside the class body (and thus the need to "intercept" anything).

Related

shared domain with scala.js, how?

Probably a basic question, but I'm confused with the various documentations and examples around scala.js.
I have a domain model I would like to share between scala and scala.js, let's say:
class Estimator(val nickname: String)
... and of course I would like to send objects between the web-client (scala.js with angular via angulate) and the server (scala with spring-mvc on spring-boot).
Should the class extends js.Object? And be annotated with #ScalaJSDefined (not yet deprecated in v0.6.15)?
If yes, it would be an unwanted dependency that comes also in the server part. Neither #scalaJSDefined nor js.Object are in the dummy scalajs-stubs. Or am I missing something?
If no, how to pass them through $http.post which expects a js.Any? I also get some TypeError at other places. Should I picke/unpickle everywhere or is there an automatic way?
EDIT 2017-03-30:
Actually this relates to Angulate, the facade for AngularJS I choose. For 2 features (communications to an http server and displaying model fields in html), the domain classes have to be Javascript classes. In Angulate's example, the domain model is duplicated.
There are also (and sadly) no plan to include js.Object in scalajs-stubs to overcome this problem. Details in https://github.com/scala-js/scala-js/issues/2564 . Perhaps js.Object doesn't hurt so much on the jvm...
So, what web frameworks and facade for scala.js does / doesn't nicely support shared domain? Not angulate1, probably Udash, perhaps react?
(Caveat: I don't know Angulate, which might affect some of this. Speaking generally, though...)
No, those shared objects shouldn't derive from js.Object or use #ScalaJSDefined -- those are only for objects that are designed to interface with JavaScript itself, and it doesn't sound like that's what you have in mind. Objects that are just for Scala don't need them.
But yes -- in general, you're usually going to need to pickle the communications in one way or another. Which pickling library you use is up to you (there are several), but remember that the communication is simply a stream of bytes -- you have to tell the system how to serialize and deserialize between your domain objects and those bytes.
There isn't anything automatic in Scala.js per se -- that's just a language, and doesn't dictate your library choices. You can use implicits to make the pickling semi-automatic, but I recommend being a bit careful with that. I don't see anything obvious in the Angulate docs that indicate that it does the pickling automatically.

Scala: Lazy baking and runtime compilation of cake pattern

One of the great limitations of the cake pattern is that its static. I would like to be able to mix-in traits potentially written by different coders completely independently. However the traits would not need to be mixed-in frequently. The user would have an initialisation screen where they would choose the traits / assemblies, before the main application was run. So the thought occurred to me why not mix-in and compile the chosen traits from with in the user choice selection module. If the compilation failed, no problem the user would just get back some message - incompatible assemblies or what ever. If the compilation succeeded then the top UI module would load the newly compiled classes with the pre-compiled parts of the assemblies and run the main application. Note there might only need to be one or two classes compiled duruing run time initialisation. All the rest of the code could have been compiled normally.
I'm pretty new to Scala. Is this a recognised pattern? Is there any support for it? It seems mad to have to use Guice for a relative simple dependency situation. Can I run the Scala compiler easily from within an application? Can I run it in memory and its outputs be used from memory without unnecessary file creation?
Note: Although appearing to be dynamic, this methodology would remain 100% static.
Edit it occurs to that one of the drives of Microsoft's Roslyn project was to enable just this sort of thing for C# and Visual Basic. But that seems to have been a pretty big project even for a high powered Microsoft team.
Calling the compiler directly from within Scala is doable, but not for the timid. Luckily, the good people at Twitter have automated the process for you. (140 character celebrity micro-blogging, and some cool Scala utilities! Thanks Twitter.) You can use the com.twitter.utils.Eval class to compile and evaluate Scala strings. In your example, you would do something like
val eval = new Eval()
val myObj = eval[BaseClass]("new BaseClass extends " + traitNameList.mkString(" with "))
This will create you a new object with all of the traits you desire built in. The question then arises as to whether this is a good idea. Downsides:
Calling out to the Scala compiler is not quick
If you do this enough, you will overload the PermGen space, as the classes you create will never be garbage collected
This really is more of the sort of thing you want a dynamic language for rather than Scala. You're likely to find places where this all kinds of works, but clashes with the rest of your architecture (yes, that's vague).

Stubbing & mocking in PHPUnit in a Zend Framework application

I am new to the Zend Framework and PHPUnit. I am transforming a legacy application to a MVC architecture and am trying to write unit tests. I am somewhat familiar with unit testing concepts but am stuck with stubbing and mocking in general. For instance consider the following
In a controller action I am trying to test I pass in a member ID. I then initialize a member object using the ID. Then I call a number of methods associated with the member object and assign the return values to the view objects.
class A extends Zend_Controller_Action {
public function viewAction() {
$member = new Member($this->getRequest()-> getParam('id'));
//perform various calls on the member object
$gender = $member->getGender();
...
//assign the return values to the view object
$this->view->assign('gender',$gender);
...
}
}
How do I mock the $member variable in my tests so that I can customize the methods return values?
If my understanding here is incorrect I would greatly appreciate some guidance.
Thank you!
If I understand you correctly, you're writing a test for this action. In that case it's impossible to mock $member since the new instance is created inside the method. That's why we're all striving to float as many of our new statements as far up in the object graph as possible (DI).
Generally there is the special PHPunit testcase Zend_Test_PHPUnit to test your controllers.
But it is, as a matter of fact, very hard or even impossible to test ZF controllers correctly (meaning with full isolation). You'd be better of to test the rest of your app, your general library, etc.
In other words, in the ZF1 logic, the controller is the central wiring place (after the bootstrap), where a lot of new statements are traditionally used. Obviously that leads to non-testability because every instance which is created instead of injected, is unmockable.
As #vascowhite pointed out, it is also generally good to strive for lean controllers. This means, move as much logic as possible to your model layer. This will lead to less redundance (DRY) and better testability at the same time.
But pay attention not to bloat your models either. At one point you will probably want to factor some code out into additional components.
An additional problem is that you can't mock the Front Controller either since it's a singleton. So you really don't have many options to test such an action. The only option would be to inject the member instance or get it from the registry (not a good idea either).
So, given all that it is clear that you can't reach full isolation for your action tests. But
ZF2 will be much easier to test, though.
You'd better start with covering controllers with functional tests. In this case you can bypass this mocking problem and get better coverage of test. Controllers are always hard to be covered with unit tests, because they are strongly coupled.
To write functional tests with ZF consider using Codeception: http://codeception.com/01-27-2012/bdd-with-zend-framework.html
Also, there are some examples, how a unit tests for controller can be made. But, sincerly, I recommend unit-testing controllers after functional tests for them are made.
http://codeception.com/docs/06-UnitTestsAndBDD#TestingController

IoC container that supports constructor injection with Scala named/default arguments?

I would prefer using constructor injection over JavaBean property injection if I could utilize the named and default arguments feature of Scala 2.8. Any IoC-containers exists that supports that or could be easily extended to do so? (The required information is there on runtime in the scala.reflect.ScalaSignature annotation of the class.)
I also have some basic(?) expectations from the IoC container:
Auto-wiring (by target class/trait or annotation, both one-to-one and one-to-many)
Explicit injection (explicit wiring) without much hassle (like Guice is weak there). Like user is injected that way in new ConnectionPool(user="test").
Life-cycle callback for cleanup on shutdown (in the proper order)
Spring can do these, obviosuly, but it doesn't support named parameters. I have considered using FactoryBean-s to bridge Scala and Spring, but that would mean too much hassle (boilerplate or code generation), as far as I see.
PART A
I have a work-in-progress reflection library that parses the Scala signature and is currently able to resolve named parameters: https://github.com/scalaj/scalaj-reflect
Unfortunately, I haven't yet tied it back into Java reflection to be able to invoke methods, nor have I added the logic to resolve default values (though this should be trivial). Both features are very high on my to-do list :)
This isn't an IoC container per-se, but it's a pre-requisite for another project of mine: https://github.com/scalaj/scalaj-spring. Work on scalaj-spring stopped when it became blindingly obvious that I wouldn't be able to make any worthwhile further progress until I had signature-based reflection in place.
PART B
All of that stuff is intended for big enterprisey people anyway. Those with no choice but to integrate their shiny new Scala code into some hulking legacy system... If that's not your use case, then you can just do Scala DI directly inside Scala.
There's DI support provided under the Lift banner: http://www.assembla.com/wiki/show/liftweb/Dependency_Injection
You should also hunt around for references to the cake pattern
Another dependency injection framework in Scala is subcut
I have considered using FactoryBean-s to bridge Scala and Spring, but that would mean too much hassle
I am not sure I understand the complexity. Its actually quite simple to implement Spring FactoryBeans in Scala. Check this little write-up http://olegzk.blogspot.com/2011/07/implementing-springs-factorybean-in.html
I've just released Sindi, an IoC container for the Scala programming language.
http://aloiscochard.github.com/sindi/

Do Extension Methods Hide Dependencies?

All,
Wanted to get a few thoughts on this. Lately I am becoming more and more of a subscriber of "purist" DI/IOC principles when designing/developing. Part of this (a big part) involves making sure there is little coupling between my classes, and that their dependencies are resolved via the constructor (there are certainly other ways of managing this, but you get the idea).
My basic premise is that extension methods violate the principles of DI/IOC.
I created the following extension method that I use to ensure that the strings inserted into database tables are truncated to the right size:
public static class StringExtensions
{
public static string TruncateToSize(this string input, int maxLength)
{
int lengthToUse = maxLength;
if (input.Length < maxLength)
{
lengthToUse = input.Length;
}
return input.Substring(0, lengthToUse);
}
}
I can then call my string from within another class like so:
string myString = "myValue.TruncateThisPartPlease.";
myString.TruncateToSize(8);
A fair translation of this without using an extension method would be:
string myString = "myValue.TruncateThisPartPlease.";
StaticStringUtil.TruncateToSize(myString, 8);
Any class that uses either of the above examples could not be tested independently of the class that contains the TruncateToSize method (TypeMock aside). If I were not using an extension method, and I did not want to create a static dependency, it would look more like:
string myString = "myValue.TruncateThisPartPlease.";
_stringUtil.TruncateToSize(myString, 8);
In the last example, the _stringUtil dependency would be resolved via the constructor and the class could be tested with no dependency on the actual TruncateToSize method's class (it could be easily mocked).
From my perspective, the first two examples rely on static dependencies (one explicit, one hidden), while the second inverts the dependency and provides reduced coupling and better testability.
So does the use of extension methods conflict with DI/IOC principles? If you're a subscriber of IOC methodology, do you avoid using extension methods?
I think it's fine - because it's not like TruncateToSize is a realistically replaceable component. It's a method which will only ever need to do a single thing.
You don't need to be able to mock out everything - just services which either disrupt unit testing (file access etc) or ones which you want to test in terms of genuine dependencies. If you were using it to perform authentication or something like that, it would be a very different matter... but just doing a straight string operation which has absolutely no configurability, different implementation options etc - there's no point in viewing that as a dependency in the normal sense.
To put it another way: if TruncateToSize were a genuine member of String, would you even think twice about using it? Do you try to mock out integer arithmetic as well, introducing IInt32Adder etc? Of course not. This is just the same, it's only that you happen to be supplying the implementation. Unit test the heck out of TruncateToSize and don't worry about it.
I see where you are coming from, however, if you are trying to mock out the functionality of an extension method, I believe you are using them incorrectly. Extension methods should be used to perform a task that would simply be inconvenient syntactically without them. Your TruncateToLength is a good example.
Testing TruncateToLength would not involve mocking it out, it would simply involve the creation of a few strings and testing that the method actually returned the proper value.
On the other hand, if you have code in your data layer contained in extension methods that is accessing your data store, then yes, you have a problem and testing is going to become an issue.
I typically only use extension methods in order to provide syntactic sugar for small, simple operations.
Extension methods, partial classes and dynamic objects. I really like them, however you must tread carefully , there be monsters here.
I would take a look at dynamic languages and see how they cope with these sort of problems on a day to day basis, its really enlightening. Especially when they have nothing to stop them from doing stupid things apart from good design and discipline. Everything is dynamic at run time, the only thing to stop them is the computer throwing a major run time error. "Duck Typing" is the maddest thing I have ever seen, good code is down to good program design, respect for others in your team, and the trust that every member, although have the ability to do some wacky things choose not to because good design leads to better results.
As for your test scenario with mock objects/ICO/DI, would you really put some heavy duty work in an extension method or just some simple static stuff that operate in a functional type way? I tend to use them like you would in a functional programming style, input goes in, results come out with no magic in the middle, just straight up framework classes that you know the guys at MS have designed and tested :P that you can rely on.
If your are doing some heavy lifting stuff using extension methods I would look at your program design again, check out your CRC designs, Class models, Use Cases, DFD's, action diagrams or whatever you like to use and figure out where in this design you planned to put this stuff in an extension method instead of a proper class.
At the end of the day, you can only test against your system design and not code outside of your scope. If you going to use extension classes, my advice would be to look at Object Composition models instead and use inheritance only when there is a very good reason.
Object Composition always wins out with me as they produce solid code. You can plug them in, take them out and do what you like with them. Mind you this all depends on whether you use Interfaces or not as part of your design. Also if you use Composition classes, the class hierarchy tree gets flattened into discrete classes and there are fewer places where your extension method will be picked up through inherited classes.
If you must use a class that acts upon another class as is the case with extension methods, look at the visitor pattern first and decide if its a better route.
Its a pain because they are hard to mock. I usually use one of these strategies
Yep, scrap the extension its a PITA to mock out
Use the extension and just test that it did the right thing. i.e. pass data into the truncate and check it got truncated
If it's not some trivial thing, and I HAVE to mock it, I'll make my extension class have a setter for the service it uses, and set that in the test code.
i.e.
static class TruncateExtensions{
public ITruncateService Service {private get;set;}
public string TruncateToSize(string s, int size)
{
return (Service ?? Service = new MyDefaultTranslationServiceImpl()). TruncateToSize(s, size);
}
}
This is a bit scary because someone might set the service when they shouldn't, but I'm a little cavalier sometimes, and if it was really important, I could do something clever with #if TEST flags, or the ServiceLocator pattern to avoid the setter being used in production.