Scala: Lazy baking and runtime compilation of cake pattern - scala

One of the great limitations of the cake pattern is that its static. I would like to be able to mix-in traits potentially written by different coders completely independently. However the traits would not need to be mixed-in frequently. The user would have an initialisation screen where they would choose the traits / assemblies, before the main application was run. So the thought occurred to me why not mix-in and compile the chosen traits from with in the user choice selection module. If the compilation failed, no problem the user would just get back some message - incompatible assemblies or what ever. If the compilation succeeded then the top UI module would load the newly compiled classes with the pre-compiled parts of the assemblies and run the main application. Note there might only need to be one or two classes compiled duruing run time initialisation. All the rest of the code could have been compiled normally.
I'm pretty new to Scala. Is this a recognised pattern? Is there any support for it? It seems mad to have to use Guice for a relative simple dependency situation. Can I run the Scala compiler easily from within an application? Can I run it in memory and its outputs be used from memory without unnecessary file creation?
Note: Although appearing to be dynamic, this methodology would remain 100% static.
Edit it occurs to that one of the drives of Microsoft's Roslyn project was to enable just this sort of thing for C# and Visual Basic. But that seems to have been a pretty big project even for a high powered Microsoft team.

Calling the compiler directly from within Scala is doable, but not for the timid. Luckily, the good people at Twitter have automated the process for you. (140 character celebrity micro-blogging, and some cool Scala utilities! Thanks Twitter.) You can use the com.twitter.utils.Eval class to compile and evaluate Scala strings. In your example, you would do something like
val eval = new Eval()
val myObj = eval[BaseClass]("new BaseClass extends " + traitNameList.mkString(" with "))
This will create you a new object with all of the traits you desire built in. The question then arises as to whether this is a good idea. Downsides:
Calling out to the Scala compiler is not quick
If you do this enough, you will overload the PermGen space, as the classes you create will never be garbage collected
This really is more of the sort of thing you want a dynamic language for rather than Scala. You're likely to find places where this all kinds of works, but clashes with the rest of your architecture (yes, that's vague).

Related

What can I do to my scala code so it will compile faster?

I have a large scala code base. (https://opensource.ncsa.illinois.edu/confluence/display/DFDL/Daffodil%3A+Open+Source+DFDL)
It's like 70K lines of scala code. We are on scala 2.11.7
Development is getting difficult because compilation - the edit-compile-test-debug cycle is too long for small changes.
Incremental recompile times can be a minute, and this is without optimization turned on. Sometimes longer. And that's with not having edited very many changes into files. Sometimes a very small change causes a huge recompilation.
So my question: What can I do by way of organizing the code, that will improve compilation time?
E.g., decomposing code into smaller files? Will this help?
E.g., more smaller libraries?
E.g., avoiding use of implicits? (we have very few)
E.g., avoiding use of traits? (we have tons)
E.g., avoiding lots of imports? (we have tons - package boundaries are pretty chaotic at this point)
Or is there really nothing much I can do about this?
I feel like this very long compilation is somehow due to some immense amount of recompiling due to dependencies, and I am thinking of how to reduce false dependencies....but that's just a theory
I'm hoping someone else can shed some light on something we might do which would improve compilation speed for incremental changes.
Here are the phases of the scala compiler, along with slightly edited
versions of their comments from the source code. Note that this
compiler is unusual in being heavily weighted towards type checking
and to transformations that are more like desugarings. Other compilers
include a lot of code for: optimization, register allocation, and
translation to IR.Some top-level points:
There is a lot of tree rewriting. Each phase tends to read in a tree
from the previous phase and transform it to a new tree. Symbols, to
contrast, remain meaningful throughout the life of the compiler. So
trees hold pointers to symbols, and not vice versa. Instead of
rewriting symbols, new information gets attached to them as the phases
progress.
Here is the list of phases from Global:
analyzer.namerFactory: SubComponent,
analyzer.typerFactory: SubComponent,
superAccessors, // add super accessors
pickler, // serializes symbol tables
refchecks, // perform reference and override checking,
translate nested objects
liftcode, // generate reified trees
uncurry, // uncurry, translate function values to anonymous
classes
tailCalls, // replace tail calls by jumps
explicitOuter, // replace C.this by explicit outer pointers,
eliminate pattern matching
erasure, // erase generic types to Java 1.4 types, add
interfaces for traits
lambdaLift, // move nested functions to top level
constructors, // move field definitions into constructors
flatten, // get rid of inner classes
mixer, // do mixin composition
cleanup, // some platform-specific cleanups
genicode, // generate portable intermediate code
inliner, // optimization: do inlining
inlineExceptionHandlers, // optimization: inline exception handlers
closureElimination, // optimization: get rid of uncalled closures
deadCode, // optimization: get rid of dead cpde
if (forMSIL) genMSIL else genJVM, // generate .class files
some work around with scala compiler
Thus scala compiler has to do a lot more work than the Java compiler, however in particular there are some things which makes the Scala compiler drastically slower, which include
Implicit resolution. Implicit resolution (i.e. scalac trying to find an implicit value when you make an implicit declartion) bubbles up over every parent scope in the declaration, this search time can be massive (particularly if you reference the same the same implicit variable many times, and its declared in some library all the way down your dependancy chain). The compile time gets even worse when you take into account implicit trait resolution and type classes, which is used heavily by libraries such as scalaz and shapeless.
Also using a huge number of anonymous classes (i.e. lambdas, blocks, anonymous functions).Macros obviously add to compile time.
A very nice writeup by Martin Odersky
Further the Java and Scala compilers convert source code into JVM bytecode and do very little optimization.On most modern JVMs, once the program bytecode is run, it is converted into machine code for the computer architecture on which it is being run. This is called the just-in-time compilation. The level of code optimization is, however, low with just-in-time compilation, since it has to be fast. To avoid recompiling, the so called HotSpot compiler only optimizes parts of the code which are executed frequently.
A program might have different performance each time it is run. Executing the same piece of code (e.g. a method) multiple times in the same JVM instance might give very different performance results depending on whether the particular code was optimized in between the runs. Additionally, measuring the execution time of some piece of code may include the time during which the JIT compiler itself was performing the optimization, thus giving inconsistent results.
One common cause of a performance deterioration is also boxing and unboxing that happens implicitly when passing a primitive type as an argument to a generic method and also frequent GC.There are several approaches to avoid the above effects during measurement,like It should be run using the server version of the HotSpot JVM, which does more aggressive optimizations.Visualvm is a great choice for profiling a JVM application. It’s a visual tool integrating several command line JDK tools and lightweight profiling capabilities.However scala abstracions are very complex and unfortunately VisualVM does not yet support this.parsing mechanisms which was taking a long time to process like cause using a lot of exists and forall which are methods of Scala collections which take predicates,predicates to FOL and thus may pass entire sequence maximizing performance.
Also making the modules cohisive and less dependent is a viable solution.Mind that intermediate code gen is somtimes machine dependent and various architechures give varied results.
An Alternative:Typesafe has released Zinc which separates the fast incremental compiler from sbt and lets the maven/other build tools use it. Thus using Zinc with the scala maven plugin has made compiling a lot faster.
A simple problem: Given a list of integers, remove the greatest one. Ordering is not necessary.
Below is version of the solution (An average I guess).
def removeMaxCool(xs: List[Int]) = {
val maxIndex = xs.indexOf(xs.max);
xs.take(maxIndex) ::: xs.drop(maxIndex+1)
}
It's Scala idiomatic, concise, and uses a few nice list functions. It's also very inefficient. It traverses the list at least 3 or 4 times.
Now consider this , Java-like solution. It's also what a reasonable Java developer (or Scala novice) would write.
def removeMaxFast(xs: List[Int]) = {
var res = ArrayBuffer[Int]()
var max = xs.head
var first = true;
for (x <- xs) {
if (first) {
first = false;
} else {
if (x > max) {
res.append(max)
max = x
} else {
res.append(x)
}
}
}
res.toList
}
Totally non-Scala idiomatic, non-functional, non-concise, but it's very efficient. It traverses the list only once!
So trade-offs should also be prioritized and sometimes you may have to work things like a java developer if none else.
Some ideas that might help - depends on your case and style of development:
Use incremental compilation ~compile in SBT or provided by your IDE.
Use sbt-revolver and maybe JRebel to reload your app faster. Better suited for web apps.
Use TDD - rather than running and debugging the whole app write tests and only run those.
Break your project down into libraries/JARs. Use them as dependencies via your build tool: SBT/Maven/etc. Or a variation of this next...
Break your project into subprojects (SBT). Compile separately what's needed or root project if you need everything. Incremental compilation is still available.
Break your project down to microservices.
Wait for Dotty to solve your problem to some degree.
If everything fails don't use advanced Scala features that make compilation slower: implicits, metaprogramming, etc.
Don't forget to check that you are allocating enough memory and CPU for your Scala compiler. I haven't tried it, but maybe you can use RAM disk instead of HDD for your sources and compile artifacts (easy on Linux).
You are touching one of the main problems of object oriented design (over engineering), in my opinion you have to flatten your class-object-trait hierachy and reduce the dependecies between classes. Brake packages to different jar files and use them as mini libraries which are "frozen" and concentrate on new code.
Check some videos also from Brian Will, who makes a case against OO over-engineering
i.e https://www.youtube.com/watch?v=IRTfhkiAqPw (you can take the good points)
I don't agree with him 100% but it makes a good case against over-engineering.
Hope that helps.
You can try to use the Fast Scala Compiler.
Asides minor code improvements like (e.g #tailrec annotations), depending on how brave you feel, you could also play around with Dotty which boasts faster compile times among other things.

code generation using Treehugger scala

I am using TreeHugger to generate code at runtime. I could not find many documents related to it. My question is, if I generate classes using treehugger, will I be able to access those classes in future?
To be precise: I want to read data coming from files like CSV and create classes at runtime . Can I use that class in future, say in the next class generated at runtime.
I am really new to scala, please forgive if I am not clear in explaining.
Thanks a lot!
I've done something similar, so I'll share what I've learned:
Treehugger ultimately generates code (strings) at runtime to be used in a subsequent, separate run (or I suppose to be eval'd at runtime, but I never got that to work).
So the course of action depends on what you mean by "runtime":
Are your .csv files only available at runtime? If you have access to the files at compile time (as is often the case), then are examples of your two options: experimental (scala macros) or traditional (sbt plugin) -- both approaches are similar but have subtle pros and cons.
If you only have access to the files at runtime, but still need to generate and "type" the classes and make the compiler expect them, then it seems to me that somebody has made a bad design mistake! But if you find yourself stuck in this circumstance, then it is possible to define and load classes at runtime with a bytecode-engineering library and some type-checker black magic (runtime type provider).

Scala has dynamic compilation?

I have found many pages saying scala doesn't have the dynamic compilation feature, whereas I have achieved the same using twitter util library. I wrote a scala code calling Eval function from mentioned lib and it create a scala class at runtime.
example val obj = Eval[MyScalaTrait](new File("flat file having scala code")))
Can you please tell me for dynamic compilation which one is better scala or groovy. I want to keep scripting part in a flat file and at run time create class. Looks like both are solving my problem, but want to see which would would be best?
I can't tell you about Groovy, but I'm using dynamic compilation of Scala code in several projects. It works mostly flawlessly, but the compiler may take it bit of warm-up time, so don't expect this to give you fantastic low latencies in "real-time" situations.

What is the difference between Clojure REPL and Scala REPL?

I’ve been working with Scala language for a few months and I’ve already created couple projects in Scala. I’ve found Scala REPL (at least its IntelliJ worksheet implementation) is quite convenient for quick development. I can write code, see what it does and it’s nice. But I do the procedure only for functions (not whole program). I can’t start my application and change it on spot. Or at least I don’t know how (so if you know you are welcome to give me piece of advice).
Several days ago my associate told me about Clojure REPL. He uses Emacs for development process and he can change code on spot and see results without restarting. For example, he starts the process and if he changes implementation of a function, his code will change his behavior without restart. I would like to have the same thing with Scala language.
P.S. I want to discuss neither which language is better nor does functional programming better than object-oriented one. I want to find a good solution. If Clojure is the better language for the task so let it be.
The short answer is that Clojure was designed to use a very simple, single pass compiler which reads and compiles a single s-expression or form at a time. For better or worse there is no global type information, no global type inference and no global analysis or optimization. Clojure uses clojure.lang.Var instances to create global bindings through a series of hashmaps from textual symbols to transactional values. def forms all create bindings at global scope in this global binding map. So where in Scala a "function" (method) will be resolved to an instance or static method on a given JVM class, in Clojure a "function" (def) is really just a reference to an entry in the table of var bindings. When a function is invoked, there isn't a static link to another class, instead the var is reference by symbolic name, then dereferenced to get an instance of a clojure.lang.IFn object which is then invoked.
This layer of indirection means that it is possible to re-evaluate only a single definition at a time, and that re-evaluation becomes globaly visible to all clients of the re-defined var.
In comparison, when a definition in Scala changes, scalac must reload the changed file, macroexpand, type infer, type check, and compile. Then due to the semantics of classloading on the JVM, scalac must also reload all classes which depend on methods in the class which changed. Also all values which are instances of the changed class become trash.
Both approaches have their strengths and weaknesses. Obviously Clojure's approach is simpler to implement, however it pays an ongoing cost in terms of performance due to continual function lookup operations forget correctness concerns due to lack of static types and what have you. This is arguably suitable for contexts in which lots of change is happening in a short timeframe (interactive development) but is less suitable for context when code is mostly static (deployment, hence Oxcart). some work I did suggests that the slowdown on Clojure programs from lack of static method linking is on the order of 16-25%. This is not to call Clojure slow or Scala fast, they just have different priorities.
Scala chooses to do more work up front so that the compiled application will perform better which is arguably more suitable for application deployment when little or no reloading will take place, but proves a drag when you want to make lots of small changes.
Some material I have on hand about compiling Clojure code more or less cronological by publication order since Nicholas influenced my GSoC work a lot.
Clojure Compilation [Nicholas]
Clojure Compilation: Full Disclojure [Nicholas]
Why is Clojure bootstrapping so slow? [Nicholas]
Oxcart and Clojure [me]
Of Oxen, Carts and Ordering [me]
Which I suppose leaves me in the unhappy place of saying simply "I'm sorry, Scala wasn't designed for that the way Clojure was" with regards to code hot swapping.

Scala Metaprogramming at Runtime

I'm building a tool that will receive unpredictable data structure, and I want to generate case class to accomplish the structure of the received data.
I'm trying to figure out if it's possible to generate case class at runtime? This structure will be know only at runtime.
It's something similar to what macro does, but in runtime.
I've found this project on the internet
mars
Which is very close to what I want to do ,but I couldn't find if it was successful of not.
Another way of doing it is generate the code, compile and put the result in the classpath, like IScala is doing to use the code in an iterative way. But I don't think that this will scale.
Does anybody has already done something like runtime code generation?
This question was also posted in scala-user mailing list
UPDATE: (as per the comments)
If all you want is throw-away code generated at runtime to be fed into to a library that cannot work with just lists and maps, and not code to be stored and used later, it would make sense to look for solutions to this problem for Java or JVM. That is, unless the library requires some Scala specific features not available to vanilla JVM bytecode (Scala adds some extras to the bytecode, which Java code doesn't need/have).
what is the benefit of generating statically typed code dynamically? as opposed to using a dynamic data structure.
I would not attempt that at all. Just use a structure such as nested lists and maps.
Runtime code generation is one of the purposes of the Mars Project. Mars is under development, at the moment there is no release version. Mars requires its own toolchain to expand macros at runtime and should use several features unique to scala.meta (http://scalameta.org/), for example, AST interpretation and AST persistence. Currently we are working on ASTs typechecking in scala-reflect, required for runtime macros expansion.