I have data with multiple documents :
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e486"),
"empId" : "1"
"type" : "WebUser",
"city" : "Pune"
}
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e487"),
"empId" : "2"
"type" : "Admin",
"city" : "Mumbai"
}
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e488"),
"empId" : "3"
"type" : "Admin",
"city" : "Pune"
}
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e489"),
"empId" : "4"
"type" : "User",
"city" : "Mumbai"
}
I want to get data according to my multiple conditions :
condition 1:- {"type" : "WebUser", "city" : "Pune"}
condition 2:- {"type" : "WebUser", "city" : "Pune"} & {"type" : "User", "city" : "Mumbai"}
I want below result when run condition 1 :
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e486"),
"empId" : "1"
"type" : "WebUser",
"city" : "Pune"
}
When I run second condition :
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e486"),
"empId" : "1"
"type" : "WebUser",
"city" : "Pune"
}
{
"_id" : ObjectId("57b68dbbc19c0bd86d62e489"),
"empId" : "4"
"type" : "User",
"city" : "Mumbai"
}
I want above result by one query,
Currently I am using below aggregate query,
db.emp.aggregate([
{ $match: { '$and': [
{"type" : "WebUser", "city" : "Pune"},
{"type" : "User", "city" : "Mumbai"}
] } },
{ $group: { _id: 1, ids: { $push: "$empId" } } }
])
Above query work for first condition & fails for other. Please help me.
For the second condition, you can use the $in operator in your query as:
db.emp.find({
"type" : { "$in": ["WebUser", "User"] },
"city" : { "$in": ["Pune", "Mumbai"] }
})
If you want to use in aggregation:
db.emp.aggregate([
{
"$match": {
"type" : { "$in": ["WebUser", "User"] },
"city" : { "$in": ["Pune", "Mumbai"] }
}
},
{ "$group": { "_id": null, "ids": { "$push": "$empId" } } }
])
or simply use the distinct() method to return an array of distinct empIds that match the above query as:
var employeeIds = db.emp.distinct("empId", {
"type" : { "$in": ["WebUser", "User"] },
"city" : { "$in": ["Pune", "Mumbai"] }
});
If you are looking for the AND operator
This example checks if a field exists AND is null
db.getCollection('TheCollection').find({
$and: [
{'the_key': { $exists: true }},
{'the_key': null}
]
})
This example checks if a field has 'value1' OR 'value2'
db.getCollection('TheCollection').find({
$or: [
{'the_key': 'value1'},
{`the_key': 'value2'}
]
})
When just checking for null, the return contains non-existing fields plus fields with value null
db.getCollection('TheCollection').find({'the_key': null})
You can use mongo db $or operator.
db.emp.find({ $or: [
{ "type": "WebUser", "city": "Pune" },
{ "type": "user", "city": "Mumbai"}
]})
You can pass conditions in the array.
For more reference see mongo docs
Display the document where in the “StudName” has value “Ajay Rathod”.
db.Student.find({name:"ajay rathod"})
{ "_id" : ObjectId("5fdd895cd2d5a20ee8cea0de"), "
Retrieve only Student Name and Grade.
db.Student.find({},{name:1,grade:1,_id:0})
{ "name" : "dhruv", "grade" : "A" }
{ "name" : "jay", "grade" : "B" }
{ "name" : "abhi", "grade" : "C" }
{ "name" : "aayush", "grade" : "A" }
{ "name" : "sukhdev", "grade" : "B" }
{ "name" : "dhruval", "grade" : "B" }
{ "name" : "ajay rathod", "grade" : "D" }
Related
I am having problems aggregating my Product Document in MongoDB.
My Product Document is:
{
"_id" : ObjectId("5d81171c2c69f45ef459e0af"),
"type" : "T-Shirt",
"name" : "Panda",
"description" : "Panda's are cool.",
"image" : ObjectId("5d81171c2c69f45ef459e0ad"),
"created_at" : ISODate("2019-09-17T18:25:48.026+01:00"),
"is_featured" : false,
"sizes" : [
"XS",
"S",
"M",
"L",
"XL"
],
"tags" : [ ],
"pricing" : {
"price" : 26,
"sale_price" : 8
},
"categories" : [
ObjectId("5d81171b2c69f45ef459e086"),
ObjectId("5d81171b2c69f45ef459e087")
],
"sku" : "5d81171c2c69f45ef459e0af"
},
And my Category Document is:
{
"_id" : ObjectId("5d81171b2c69f45ef459e087"),
"name" : "Art",
"description" : "These items are our artsy options.",
"created_at" : ISODate("2019-09-17T18:25:47.196+01:00")
},
My aim is to perform aggregation on the Product Document in order to count the number of items within each Category. So I have the Category "Art", I need to count the products are in the "Art" Category:
My current aggregate:
db.product.aggregate(
{ $unwind : "$categories" },
{
$group : {
"_id" : { "name" : "$name" },
"doc" : { $push : { "category" : "$categories" } },
}
},
{ $unwind : "$doc" },
{
$project : {
"_id" : 0,
"name" : "$name",
"category" : "$doc.category"
}
},
{
$group : {
"_id" : "$category",
"name": { "$first": "$name" },
"items_in_cat" : { $sum : 1 }
}
},
{ "$sort" : { "items_in_cat" : -1 } },
)
Which does actually work but not as I need:
{
"_id" : ObjectId("5d81171b2c69f45ef459e082"),
"name" : null, // Why is the name of the category no here?
"items_in_cat" : 4
},
As we can see the name is null. How can I aggregate the output to be:
{
"_id" : ObjectId("5d81171b2c69f45ef459e082"),
"name" : "Art",
"items_in_cat" : 4
},
We need to use $lookup to fetch the name from Category collection.
The following query can get us the expected output:
db.product.aggregate([
{
$unwind:"$categories"
},
{
$group:{
"_id":"$categories",
"items_in_cat":{
$sum:1
}
}
},
{
$lookup:{
"from":"category",
"let":{
"id":"$_id"
},
"pipeline":[
{
$match:{
$expr:{
$eq:["$_id","$$id"]
}
}
},
{
$project:{
"_id":0,
"name":1
}
}
],
"as":"categoryLookup"
}
},
{
$unwind:{
"path":"$categoryLookup",
"preserveNullAndEmptyArrays":true
}
},
{
$project:{
"_id":1,
"name":{
$ifNull:["$categoryLookup.name","NA"]
},
"items_in_cat":1
}
}
]).pretty()
Data set:
Collection: product
{
"_id" : ObjectId("5d81171c2c69f45ef459e0af"),
"type" : "T-Shirt",
"name" : "Panda",
"description" : "Panda's are cool.",
"image" : ObjectId("5d81171c2c69f45ef459e0ad"),
"created_at" : ISODate("2019-09-17T17:25:48.026Z"),
"is_featured" : false,
"sizes" : [
"XS",
"S",
"M",
"L",
"XL"
],
"tags" : [ ],
"pricing" : {
"price" : 26,
"sale_price" : 8
},
"categories" : [
ObjectId("5d81171b2c69f45ef459e086"),
ObjectId("5d81171b2c69f45ef459e087")
],
"sku" : "5d81171c2c69f45ef459e0af"
}
Collection: category
{
"_id" : ObjectId("5d81171b2c69f45ef459e086"),
"name" : "Art",
"description" : "These items are our artsy options.",
"created_at" : ISODate("2019-09-17T17:25:47.196Z")
}
{
"_id" : ObjectId("5d81171b2c69f45ef459e087"),
"name" : "Craft",
"description" : "These items are our artsy options.",
"created_at" : ISODate("2019-09-17T17:25:47.196Z")
}
Output:
{
"_id" : ObjectId("5d81171b2c69f45ef459e087"),
"items_in_cat" : 1,
"name" : "Craft"
}
{
"_id" : ObjectId("5d81171b2c69f45ef459e086"),
"items_in_cat" : 1,
"name" : "Art"
}
I want to be able to group each "Place" to show over time, how many "PatientIds" they are seeing on a given day and then be able to filter this by what the action is.
Basically Total Patients on y-axis, Date on x-axis and then a filter or stacked chart to show the action. I also thought about a mapreduce, but have never done that in mongo
I can't figure out the correct mongo query. Right now I have:
db.collection.aggregate({"$group":{_id:{place:"$place",date:"$date",action:"$action",count:{$sum:1}}},{$sort:{"_id.date":1,"_id.place":1}})
However, this is just listing out the data. I tried to do a match on all places, but that didn't give me the results I was looking for either. Any ideas?
Example json:
{
"_id" : ObjectId(""),
"patientId" : "100",
"place" : "1",
"action" : "DIAGNOSED",
"date" : ISODate("2017-01-20")
}
{
"_id" : ObjectId(""),
"patientId" : "101",
"place" : "1",
"action" : "PATIENT IN",
"date" : ISODate("2017-01-20)
}
{
"_id" : ObjectId(""),
"patientId" : "200",
"place" : "2",
"action" : "MEDICINE",
"date" : ISODate("2017-01-05")
}
{
"_id" : ObjectId(""),
"patientId" : "300",
"place" : "2",
"action" : "DIAGNOSED",
"date" : ISODate("2017-01-31")
}
EDIT - mapreduce
> var map = function(){emit(this.place,1)}
> var reduce = function(key,values){var res = 0;values.forEach(function(v){res+=1});return{count:res};}
> db.new.mapReduce(map,reduce,{out:"mapped_places"});
{
"result" : "mapped_places",
"timeMillis" : 88,
"counts" : {
"input" : 4,
"emit" : 4,
"reduce" : 2,
"output" : 2
},
"ok" : 1
}
> db.mapped_offices.find({})
{ "_id" : "1", "value" : { "count" : 2 } }
{ "_id" : "2", "value" : { "count" : 2 } }
>
You can try below aggregation query.
db.collection.aggregate([
{
"$group": {
"_id": {
"date": "$date",
"place": "$place"
},
"actions": {
"$push": "$action"
},
"count": {
"$sum": 1
}
}
},
{
"$unwind": "$actions"
},
{
"$sort": {
"_id.date": 1,
"_id.place": 1
}
}
]);
This should output something like
{ "_id" : { "date" : ISODate("2017-01-20T00:00:00Z"), "place" : "1"}, "count" : 2, "actions" : "PATIENT IN" }
{ "_id" : { "date" : ISODate("2017-01-20T00:00:00Z"), "place" : "1"}, "count" : 2, "actions" : "DIAGNOSED" }
I am trying to port an existing SQL schema into Mongo.
We have document tables, with sometimes several times the same document, with a different revision but the same reference. I want to get only the latest revisions of the documents.
A sample input data:
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC305",
"code" : "305-D",
"title" : "Document 305",
"creationdate" : ISODate("2011-11-24T15:13:28.887Z"),
"creator" : "X"
},
{
"Uid" : "xxx",
"status" : "COMMENTED",
"reference" : "DOC306",
"code" : "306-A",
"title" : "Document 306",
"creationdate" : ISODate("2011-11-28T07:23:18.807Z"),
"creator" : "X"
},
{
"Uid" : "xxx",
"status" : "COMMENTED",
"reference" : "DOC306",
"code" : "306-B",
"title" : "Document 306",
"creationdate" : ISODate("2011-11-28T07:26:49.447Z"),
"creator" : "X"
},
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC501",
"code" : "501-A",
"title" : "Document 501",
"creationdate" : ISODate("2011-11-19T06:30:35.757Z"),
"creator" : "X"
},
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC501",
"code" : "501-B",
"title" : "Document 501",
"creationdate" : ISODate("2011-11-19T06:40:32.957Z"),
"creator" : "X"
}
Given this data, I want this result set (sometimes I want only the last revision, sometimes I want all revisions with an attribute telling me whether it's the latest):
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC305",
"code" : "305-D",
"title" : "Document 305",
"creationdate" : ISODate("2011-11-24T15:13:28.887Z"),
"creator" : "X",
"lastrev" : true
},
{
"Uid" : "xxx",
"status" : "COMMENTED",
"reference" : "DOC306",
"code" : "306-B",
"title" : "Document 306",
"creationdate" : ISODate("2011-11-28T07:26:49.447Z"),
"creator" : "X",
"lastrev" : true
},
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC501",
"code" : "501-B",
"title" : "Document 501",
"creationdate" : ISODate("2011-11-19T06:40:32.957Z"),
"creator" : "X",
"lastrev" : true
}
I already have a bunch of filters, sorting, and skip/limit (for pagination of data), so the final result set should be mindful of these constraints.
The current "find" query (built with the .Net driver), which filters fine but gives me all revisions of each document:
coll.find(
{ "$and" : [
{ "$or" : [
{ "deletedid" : { "$exists" : false } },
{ "deletedid" : null }
] },
{ "$or" : [
{ "taskid" : { "$exists" : false } },
{ "taskid" : null }
] },
{ "objecttypeuid" : { "$in" : ["xxxxx"] } }
] },
{ "_id" : 0, "Uid" : 1, "lastrev" : 1, "title" : 1, "code" : 1, "creator" : 1, "owner" : 1, "modificator" : 1, "status" : 1, "reference": 1, "creationdate": 1 }
).sort({ "creationdate" : 1 }).skip(0).limit(10);
Using another question, I have been able to build this aggregation, which gives me the latest revision of each document, but with not enough attributes in the result:
coll.aggregate([
{ $sort: { "creationdate": 1 } },
{
$group: {
"_id": "$reference",
result: { $last: "$creationdate" },
creationdate: { $last: "$creationdate" }
}
}
]);
I would like to integrating the aggregate with the find query.
I have found the way to mix aggregation and filtering:
coll.aggregate(
[
{ $match: {
"$and" : [
{ "$or" : [
{ "deletedid" : { "$exists" : false } },
{ "deletedid" : null }
] },
{ "$or" : [
{ "taskid" : { "$exists" : false } },
{ "taskid" : null }
] },
{ "objecttypeuid" : { "$in" : ["xxx"] } }
]
}
},
{ $sort: { "creationdate": 1 } },
{ $group: {
"_id": "$reference",
"doc": { "$last": "$$ROOT" }
}
},
{ $sort: { "doc.creationdate": 1 } },
{ $skip: skip },
{ $limit: limit }
],
{ allowDiskUse: true }
);
For each result node, this gives me a "doc" node with the document data. It has too much data still (it's missing projections), but it's a start.
Translated in .Net:
FilterDefinitionBuilder<BsonDocument> filterBuilder = Builders<BsonDocument>.Filter;
FilterDefinition<BsonDocument> filters = filterBuilder.Empty;
filters = filters & (filterBuilder.Not(filterBuilder.Exists("deletedid")) | filterBuilder.Eq("deletedid", BsonNull.Value));
filters = filters & (filterBuilder.Not(filterBuilder.Exists("taskid")) | filterBuilder.Eq("taskid", BsonNull.Value));
foreach (var f in fieldFilters) {
filters = filters & filterBuilder.In(f.Key, f.Value);
}
var sort = Builders<BsonDocument>.Sort.Ascending(orderby);
var group = new BsonDocument {
{ "_id", "$reference" },
{ "doc", new BsonDocument("$last", "$$ROOT") }
};
var aggregate = coll.Aggregate(new AggregateOptions { AllowDiskUse = true })
.Match(filters)
.Sort(sort)
.Group(group)
.Sort(sort)
.Skip(skip)
.Limit(rows);
return aggregate.ToList();
I'm pretty sure there are better ways to do this, though.
You answer is pretty close. Instead of $last, $max is better.
About $last operator:
Returns the value that results from applying an expression to the last document in a group of documents that share the same group by a field. Only meaningful when documents are in a defined order.
Get the last revision in each group, see code below in mongo shell:
db.collection.aggregate([
{
$group: {
_id: '$reference',
doc: {
$max: {
"creationdate" : "$creationdate",
"code" : "$code",
"Uid" : "$Uid",
"status" : "$status",
"title" : "$title",
"creator" : "$creator"
}
}
}
},
{
$project: {
_id: 0,
Uid: "$doc.Uid",
status: "$doc.status",
reference: "$_id",
code: "$doc.code",
title: "$doc.title",
creationdate: "$doc.creationdate",
creator: "$doc.creator"
}
}
]).pretty()
The output as your expect:
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC501",
"code" : "501-B",
"title" : "Document 501",
"creationdate" : ISODate("2011-11-19T06:40:32.957Z"),
"creator" : "X"
}
{
"Uid" : "xxx",
"status" : "COMMENTED",
"reference" : "DOC306",
"code" : "306-B",
"title" : "Document 306",
"creationdate" : ISODate("2011-11-28T07:26:49.447Z"),
"creator" : "X"
}
{
"Uid" : "xxx",
"status" : "ACCEPTED",
"reference" : "DOC305",
"code" : "305-D",
"title" : "Document 305",
"creationdate" : ISODate("2011-11-24T15:13:28.887Z"),
"creator" : "X"
}
Here is the data set:
{ "_id" : "1", "key" : "111", "payload" : 100, "type" : "foo", "createdAt" : ISODate("2016-07-08T11:59:18.000Z") }
{ "_id" : "2", "key" : "111", "payload" : 100, "type" : "bar", "createdAt" : ISODate("2016-07-09T11:59:19.000Z") }
{ "_id" : "3", "key" : "222", "payload" : 100, "type" : "foo", "createdAt" : ISODate("2016-07-10T11:59:20.000Z") }
{ "_id" : "4", "key" : "222", "payload" : 100, "type" : "foo", "createdAt" : ISODate("2016-07-11T11:59:21.000Z") }
{ "_id" : "5", "key" : "222", "payload" : 100, "type" : "bar", "createdAt" : ISODate("2016-07-12T11:59:22.000Z") }
I have to group them by key:
db.items.aggregate([{$group: {_id: {key: '$key'}}}])
that produces the next set:
{ "_id" : { "key" : "111" } }
{ "_id" : { "key" : "222" } }
And after that I have to retrieve the most recent values of foo and bar per each group record.
My question is what is the most optimal way to do it? I can iterate the items in javascript and perform additional roundtrip to DB per each group result. But I'm not sure if it's time-efficient.
I am not sure about the most optimal way to do it, but the easy one will be to expand your aggregation pipeline like
db.items.aggregate([
{
$group:
{
_id: { key: "$key", type: "$type" },
last: { $max: "$createdAt" }
}
},
{
$group:
{
_id: { key: "$_id.key" },
mostRecent: { $push: { type: "$_id.type", createdAt: "$last" } }
}
}
]);
that for your collection of documents will result into
{ "_id" : { "key" : "222" }, "mostRecent" : [ { "type" : "bar", "createdAt" : ISODate("2016-07-12T11:59:22Z") }, { "type" : "foo", "createdAt" : ISODate("2016-07-11T11:59:21Z") } ] }
{ "_id" : { "key" : "111" }, "mostRecent" : [ { "type" : "bar", "createdAt" : ISODate("2016-07-09T11:59:19Z") }, { "type" : "foo", "createdAt" : ISODate("2016-07-08T11:59:18Z") } ] }
I have a real case in my project:
> db.foo.insert({a:'1',
... province: [{id:'1',name:'Yogyakarta',state:[{id:'1',name:'bantul'}]}]
... })
Then I find()...
> db.foo.find();
> { "_id" : ObjectId("5279ef4c6cfd9d5c0e19bbe0"),
"a" : "1",
"province" : [
{"id" : "1",
"name" : "Yogyakarta",
"state" : [
{"id" : "1","name" : "bantul" }
]
}
]
}
how to remove and update state with id='1'
REMOVE
To remove the documents that match a deletion criteria, call the remove() method with the <query> parameter.
db.foo.remove({'province.state.id': '1'})
Example
First, insert data Yogyakarta - Bantul
db.foo.insert({a:'1', province: [{id:'1',name:'Yogyakarta',state:[{id:'1',name:'bantul'}]}] })
Insert data Jakarta - Jakarta Selatan
db.foo.insert({a:'1', province: [{id:'2',name:'Jakarta',state:[{id:'2',name:'Jakarta Selatan'}]}] })
Now, you have two documents
db.foo.find();
Result
[
{ "a" : "1", "_id" : { "$oid" : "527b54c6cc937439340367f9" }, "province" : [ { "name" : "Yogyakarta", "id" : "1", "state" : [ { "name" : "bantul", "id" : "1" } ] } ] },
{ "a" : "1", "_id" : { "$oid" : "527b54d3cc937439340367fa" }, "province" : [ { "name" : "Jakarta", "id" : "2", "state" : [ { "name" : "Jakarta Selatan", "id" : "2" } ] } ] }
]
Now, delete document where the subdocument province contains a field state whose value 1.
db.foo.remove({'province.state.id': '1'})
Check
db.foo.find();
Now, you have one document
[
{ "a" : "1", "_id" : { "$oid" : "527b54d3cc937439340367fa" }, "province" : [ { "name" : "Jakarta", "id" : "2", "state" : [ { "name" : "Jakarta Selatan", "id" : "2" } ] } ] }
]
UPDATE
By default, the update() method updates a single document. If the multi option is set to true, the method updates all documents that match the query criteria.
db.foo.update({'province.state.id': '2'}, { $set: {'a': '2'} })
Check
db.foo.find();
Result
[
{ "a" : "2", "_id" : { "$oid" : "527b54d3cc937439340367fa" }, "province" : [ { "name" : "Jakarta", "id" : "2", "state" : [ { "name" : "Jakarta Selatan", "id" : "2" } ] } ] }
]