'Self' cannot be used in non-trivial closures - swift

I would like to have a class with static initialization method:
class A {
required init() {
}
// this one works
class func f0() -> Self {
return self.init()
}
// this one works as well
class func f1() -> Self {
let create = { self.init() } // no error, inferred closure type is '() -> Self'
return create()
}
}
Unfortunately, Swift 3 compiler is unable to infer type for any closure more complex than { self.init() }. For example:
class func f2() -> Self {
let create = {
// error: unable to infer complex closure return type; add explicit type to disambiguate
let a = self.init()
return a
}
return create()
}
Any attempt to specify closure type, variable type explicitly or cast from A to Self leads to an error:
class func f3() -> Self {
let create = { () -> Self in // error: 'Self' is only available in a protocol or as the result of a method in a class;
let a = self.init()
return a
}
return create()
}
class func f4() -> Self {
let create = {
let a: Self = self.init() // error: 'Self' is only available in a protocol or as the result of a method in a class;
return a
}
return create()
}
class func f5() -> Self {
let create = { () -> A in
let a = self.init()
return a
}
return create() as! Self // error: cannot convert return expression of type 'A' to return type 'Self'
}
The solution is to avoid closures using Self.
This seems like a very unfortunate limitation of the compiler. Is there a reason behind it? Is this issue likely to be fixed in future Swift versions?

The fundamental problem is that Swift needs to determine the type of Self at compile time, but you want to determine it at runtime. It has been somewhat expanded to allow class functions to return Self if everything can be resolved at compile time, but Swift can't always prove that your types must be correct in some of these cases (sometimes because it doesn't know how yet, and sometimes because it's actually possible to be wrong).
As an example, consider a subclass that doesn't override a Self-returning method. How can it return the subclass? What if it passes Self to something else? How can you statically type check that at compile time given future subclasses the compiler doesn't even know about? (Including subclasses that can be added at runtime and across module boundaries.)
I expect this to get a little better, but Swift discourages this kind of complex inheritance (these are non-final classes, so you must consider all the possible subclasses) and prefers protocols long-term, so I wouldn't expect this to be fully possible in Swift 4 or 5.

Related

Reference to generic function in Swift

In Swift, you can create a reference to a function in the form of a closure. For example:
func simpleFunc(param: Int) {
}
let simpleFuncReference = simpleFunc(param:) // works just fine
But in one case, I have a function with a generic parameter like this:
func hardFunc<T: StringProtocol>(param: T) {
}
let hardFuncReference = hardFunc(param:) // "Generic parameter 'T' could not be inferred"
To try to remove that error, I attempted to explicitly specify the type, but immediately another error comes up.
func hardFunc<T: StringProtocol>(param: T) {
}
let hardFuncReference = hardFunc(param:) // "Cannot explicitly specialize a generic function"
Is there a way I can get a reference to hardFunc as a closure?
As you already guessed, you have to help type inference out a little:
func hardFunc<T: StringProtocol>(param: T) {
}
let hardFuncReference:(String) -> Void = hardFunc(param:)
Note that you do have to specify the particular type that you're specializing on, but in this case you do it by specifying the type of the variable you're assigning the closure to.
You can't keep it generic unless you're in a generic context specifying that it's generic on the same type. So this will work too
struct Foo<T: StringProtocol> {
let hardFuncReference:(T) -> Void = hardFunc(param:)
}

I expected the system to report non protocol conformance, but it does not! Why?

I am using Xcode Version 11.3.1 (11C504)
I am trying to create a generic function in Swift that will reject its
parameter unless such a parameter is Optional.
In the following code, I was expecting the system to report errors in all calls to onlyCallableByAnOptable() made inside test(), because none of them provide an optional value as a parameter.
However, the system only reports non-protocol conformance if I remove the Optional extension that conforms to Optable!
Which to me, it means that the system is regarding any and all values as Optional, regardless!
Am I doing something wrong?
(By the way, the following code used to be working as expected in earlier versions of Swift. I just recently found out that it stopped working, for it was letting a non-Optional go through.)
protocol Optable {
func opt()
}
func onlyCallableByAnOptable<T>( _ value: T) -> T where T: Optable {
return value
}
// Comment the following line to get the errors
extension Optional: Optable { func opt() {} }
class TestOptable {
static func test()
{
let c = UIColor.blue
let s = "hi"
let i = Int(1)
if let o = onlyCallableByAnOptable(c) { print("color \(o)") }
//^ expected ERROR: Argument type 'UIColor' does not conform to expected type 'Optable'
if let o = onlyCallableByAnOptable(s) { print("string \(o)") }
//^ expected ERROR: Argument type 'String' does not conform to expected type 'Optable'
if let o = onlyCallableByAnOptable(i) { print("integer \(o)") }
//^ expected ERROR: Argument type 'Int' does not conform to expected type 'Optable'
}
}
Since you've made all Optionals conform to Optable and you are using the if let syntax to unwrap the result of the call to onlyCallableByAnOptable (which means the return type must be some kind of Optional, which means the parameter must also be that same type of Optional because both the parameter and the return type are of type T in your generic method), Swift is inferring the types being passed in as UIColor?, String?, and Int? (implicitly wrapping them in Optionals) instead of UIColor, String and Int.
I am the one who posted this question.
I was trying to create a generic function in Swift that would reject
its parameter unless such parameter is an Optional.
As #TylerTheCompiler pointed out, using my original implementation (in the question), Swift was inferring type T (used in onlyCallableByAnOptable()), based on the full context of the call, not solely on the type of the value provided as parameter to it, therefore inferring T to be an Optional.
For the sake of helping others who might be trying to achieve the same as I was, the following is my solution to the problem I had.
All calls to onlyCallableByAnOptable(...) now correctly yield errors due to non-protocol conformance.
Errors like: Argument type 'UIColor' does not conform to expected type 'Optable'
If anyone knows of a simpler solution, please do post it as an answer
to: How to create a generic function in Swift that will reject the given parameter unless it is an Optional?.
protocol Optable {
associatedtype OptableType
func optionalOptable() -> OptableType?
func opt()
}
func onlyCallableByAnOptable<T>( _ value: T) -> T.OptableType? where T: Optable {
return value.optionalOptable()
}
extension Optional: Optable {
typealias OptableType = Wrapped //: Wrapped is the type of the element, as defined in Optional
func opt() {}
func optionalOptable() -> OptableType? {
return self
}
}
class TestOptable {
static func test()
{
let c = UIColor.blue
let s = "hi"
let i = Int(1)
if let o = onlyCallableByAnOptable(c) { // ERROR, as was desired.
print("color \(o)")
}
if let o = onlyCallableByAnOptable(s) { // ERROR, as was desired.
print("string \(o)")
}
if let o = onlyCallableByAnOptable(i) { // ERROR, as was desired.
print("integer \(o)")
}
}
}

Instantiate Self outside of init in Swift

I want to create a class, so that the it's subclasses after calling a function a, will receive a new object of the type Self. I'm insuring, that the subclasses will have the init() method.
In a way I want to clone the object, but actually it's more than that, since I want to create a clone with modified values of the original, so I don't really want to use swifty copy constructor syntax
Why it doesn't work? Definitely this:
func myCustomCopy(modificationCommand: Command) -> Test {
let newInt = modificationCommand.execute(self.myInt)
return Test(newInt: newInt)
}
is not what I want.
Example:
protocol Testable {
var myInt: Int { get set }
init(newInt: Int)
}
class Test: Testable {
var myInt = 10
required init(newInt: Int) { myInt = newInt }
func myCustomCopy(modificationCommand: Command) -> Self {
let newInt = modificationCommand.execute(self.myInt)
return self.init(newInt: newInt)
}
}
You may use the (dynamically typed) metatype returned by type(of:) to access an initializer of the concrete type of the metatype. Quoting the Language Reference - Metatypes
Use an initializer expression to construct an instance of a type from
that type’s metatype value. For class instances, the initializer
that’s called must be marked with the required keyword or the entire
class marked with the final keyword.
So in your case, you could use the metatype of self to call a required initializer of the concrete type of self, e.g.
func myCustomCopy() -> Self {
return type(of: self).init()
}
Note that, as specified in the quote above, since you are working with a non-final class, the initializer must be a required one.

How do I declare a generic function in a protocol that returns self? [duplicate]

I have a protocol P that returns a copy of the object:
protocol P {
func copy() -> Self
}
and a class C that implements P:
class C : P {
func copy() -> Self {
return C()
}
}
However, whether I put the return value as Self I get the following error:
Cannot convert return expression of type 'C' to return type 'Self'
I also tried returning C.
class C : P {
func copy() -> C {
return C()
}
}
That resulted in the following error:
Method 'copy()' in non-final class 'C' must return Self to conform
to protocol 'P'
Nothing works except for the case where I prefix class C with final ie do:
final class C : P {
func copy() -> C {
return C()
}
}
However if I want to subclass C then nothing would work. Is there any way around this?
The problem is that you're making a promise that the compiler can't prove you'll keep.
So you created this promise: Calling copy() will return its own type, fully initialized.
But then you implemented copy() this way:
func copy() -> Self {
return C()
}
Now I'm a subclass that doesn't override copy(). And I return a C, not a fully-initialized Self (which I promised). So that's no good. How about:
func copy() -> Self {
return Self()
}
Well, that won't compile, but even if it did, it'd be no good. The subclass may have no trivial constructor, so D() might not even be legal. (Though see below.)
OK, well how about:
func copy() -> C {
return C()
}
Yes, but that doesn't return Self. It returns C. You're still not keeping your promise.
"But ObjC can do it!" Well, sort of. Mostly because it doesn't care if you keep your promise the way Swift does. If you fail to implement copyWithZone: in the subclass, you may fail to fully initialize your object. The compiler won't even warn you that you've done that.
"But most everything in ObjC can be translated to Swift, and ObjC has NSCopying." Yes it does, and here's how it's defined:
func copy() -> AnyObject!
So you can do the same (there's no reason for the ! here):
protocol Copyable {
func copy() -> AnyObject
}
That says "I'm not promising anything about what you get back." You could also say:
protocol Copyable {
func copy() -> Copyable
}
That's a promise you can make.
But we can think about C++ for a little while and remember that there's a promise we can make. We can promise that we and all our subclasses will implement specific kinds of initializers, and Swift will enforce that (and so can prove we're telling the truth):
protocol Copyable {
init(copy: Self)
}
class C : Copyable {
required init(copy: C) {
// Perform your copying here.
}
}
And that is how you should perform copies.
We can take this one step further, but it uses dynamicType, and I haven't tested it extensively to make sure that is always what we want, but it should be correct:
protocol Copyable {
func copy() -> Self
init(copy: Self)
}
class C : Copyable {
func copy() -> Self {
return self.dynamicType(copy: self)
}
required init(copy: C) {
// Perform your copying here.
}
}
Here we promise that there is an initializer that performs copies for us, and then we can at runtime determine which one to call, giving us the method syntax you were looking for.
With Swift 2, we can use protocol extensions for this.
protocol Copyable {
init(copy:Self)
}
extension Copyable {
func copy() -> Self {
return Self.init(copy: self)
}
}
There is another way to do what you want that involves taking advantage of Swift's associated type. Here's a simple example:
public protocol Creatable {
associatedtype ObjectType = Self
static func create() -> ObjectType
}
class MyClass {
// Your class stuff here
}
extension MyClass: Creatable {
// Define the protocol function to return class type
static func create() -> MyClass {
// Create an instance of your class however you want
return MyClass()
}
}
let obj = MyClass.create()
Actually, there is a trick that allows to easily return Self when required by a protocol (gist):
/// Cast the argument to the infered function return type.
func autocast<T>(some: Any) -> T? {
return some as? T
}
protocol Foo {
static func foo() -> Self
}
class Vehicle: Foo {
class func foo() -> Self {
return autocast(Vehicle())!
}
}
class Tractor: Vehicle {
override class func foo() -> Self {
return autocast(Tractor())!
}
}
func typeName(some: Any) -> String {
return (some is Any.Type) ? "\(some)" : "\(some.dynamicType)"
}
let vehicle = Vehicle.foo()
let tractor = Tractor.foo()
print(typeName(vehicle)) // Vehicle
print(typeName(tractor)) // Tractor
Swift 5.1 now allow a forced cast to Self, as! Self
1> protocol P {
2. func id() -> Self
3. }
9> class D : P {
10. func id() -> Self {
11. return D()
12. }
13. }
error: repl.swift:11:16: error: cannot convert return expression of type 'D' to return type 'Self'
return D()
^~~
as! Self
9> class D : P {
10. func id() -> Self {
11. return D() as! Self
12. }
13. } //works
Following on Rob's suggestion, this could be made more generic with associated types. I've changed the example a bit to demonstrate the benefits of the approach.
protocol Copyable: NSCopying {
associatedtype Prototype
init(copy: Prototype)
init(deepCopy: Prototype)
}
class C : Copyable {
typealias Prototype = C // <-- requires adding this line to classes
required init(copy: Prototype) {
// Perform your copying here.
}
required init(deepCopy: Prototype) {
// Perform your deep copying here.
}
#objc func copyWithZone(zone: NSZone) -> AnyObject {
return Prototype(copy: self)
}
}
I had a similar problem and came up with something that may be useful so I though i'd share it for future reference because this is one of the first places I found when searching for a solution.
As stated above, the problem is the ambiguity of the return type for the copy() function. This can be illustrated very clearly by separating the copy() -> C and copy() -> P functions:
So, assuming you define the protocol and class as follows:
protocol P
{
func copy() -> P
}
class C:P
{
func doCopy() -> C { return C() }
func copy() -> C { return doCopy() }
func copy() -> P { return doCopy() }
}
This compiles and produces the expected results when the type of the return value is explicit. Any time the compiler has to decide what the return type should be (on its own), it will find the situation ambiguous and fail for all concrete classes that implement the P protocol.
For example:
var aC:C = C() // aC is of type C
var aP:P = aC // aP is of type P (contains an instance of C)
var bC:C // this to test assignment to a C type variable
var bP:P // " " " P " "
bC = aC.copy() // OK copy()->C is used
bP = aC.copy() // Ambiguous.
// compiler could use either functions
bP = (aC as P).copy() // but this resolves the ambiguity.
bC = aP.copy() // Fails, obvious type incompatibility
bP = aP.copy() // OK copy()->P is used
In conclusion, this would work in situations where you're either, not using the base class's copy() function or you always have explicit type context.
I found that using the same function name as the concrete class made for unwieldy code everywhere, so I ended up using a different name for the protocol's copy() function.
The end result is more like:
protocol P
{
func copyAsP() -> P
}
class C:P
{
func copy() -> C
{
// there usually is a lot more code around here...
return C()
}
func copyAsP() -> P { return copy() }
}
Of course my context and functions are completely different but in spirit of the question, I tried to stay as close to the example given as possible.
Just throwing my hat into the ring here. We needed a protocol that returned an optional of the type the protocol was applied on. We also wanted the override to explicitly return the type, not just Self.
The trick is rather than using 'Self' as the return type, you instead define an associated type which you set equal to Self, then use that associated type.
Here's the old way, using Self...
protocol Mappable{
static func map() -> Self?
}
// Generated from Fix-it
extension SomeSpecificClass : Mappable{
static func map() -> Self? {
...
}
}
Here's the new way using the associated type. Note the return type is explicit now, not 'Self'.
protocol Mappable{
associatedtype ExplicitSelf = Self
static func map() -> ExplicitSelf?
}
// Generated from Fix-it
extension SomeSpecificClass : Mappable{
static func map() -> SomeSpecificClass? {
...
}
}
To add to the answers with the associatedtype way, I suggest to move the creating of the instance to a default implementation of the protocol extension. In that way the conforming classes won't have to implement it, thus sparing us from code duplication:
protocol Initializable {
init()
}
protocol Creatable: Initializable {
associatedtype Object: Initializable = Self
static func newInstance() -> Object
}
extension Creatable {
static func newInstance() -> Object {
return Object()
}
}
class MyClass: Creatable {
required init() {}
}
class MyOtherClass: Creatable {
required init() {}
}
// Any class (struct, etc.) conforming to Creatable
// can create new instances without having to implement newInstance()
let instance1 = MyClass.newInstance()
let instance2 = MyOtherClass.newInstance()

Returning a generic from a protocol-defined function in Swift

I declared a protocol with a generic function, but it seems that the type inference isn't working properly after implementing it.
protocol SearchableRealmModel {
static func search<Self: Object>(needle: String) -> Results<Self>?
}
class Thing: Object, SearchableRealmModel {
class func search<Thing>(needle: String) -> Results<Thing>? {
return realm()?.objects(Thing).filter("name == '\(needle)'")
}
}
let things = Thing.search("hello") // works but inferred type is Results<Object>?
The problem here is that the inferred type of things is Results<Object>?. I realize these variations can be used,
let things: Results<Thing>? = Thing.search("hello")
let things = Thing.search("hello") as Results<Thing>?
but having to specify the type every time is quite repetitive.
In my tests, using other types than Results<..>? kept the type inference intact. And this could be caused by having to specify the parent class in Self: Object (which is required because of Results).
Any help is appreciated.
This is a limitation of Swift's generics machinery. The compiler can generate a concrete signature for static func search(needle: String) -> Results<Object>? which satisfies the type constraint because Object subclasses will match this. You could probably file a bug towards bugs.swift.org because I think the Swift core team would also consider this to be a bug, if not very unexpected behavior.
However, you can modify your code to use protocol extensions to do what you want:
protocol SearchableRealmModel {}
extension SearchableRealmModel where Self: Object {
static func search(needle: String) -> Results<Self> {
return try! Realm().objects(Self).filter("name == '\(needle)'")
}
}
class Thing: Object, SearchableRealmModel {
dynamic var name = ""
}
let result = Thing.search("thing1") // => inferred as Results<Thing>
print(result.first?.name)
If you want custom implementations of search for other Realm models, you can reimplement the function there, which the compiler will prioritize over the protocol extension version:
class OtherThing: Object, SearchableRealmModel {
dynamic var id = ""
static func search(needle: String) -> Results<OtherThing> {
return try! Realm().objects(OtherThing).filter("id == '\(needle)'")
}
}