I am creating a system in orientDB I have some cases where i need to make the system where multiple threads adding edges to certain vertex and updating a property on that vertex.
My Question is that is there any method where i can block operations on this vertex until other threads finish a block of code this block for both read and write?
My case i have vertex for hotel and number of available rooms as property, any reservation, my code will work the following order
1- Make sure the remaining rooms size is more than 1
2- Create an edge to the customer vertex
3- Decrease the number of available rooms by one
OrientDB has an optimistic concurrency control system, but on very high concurrent updates on the few records it could be more efficient locking records to avoid retries. You could synchronize the access by yourself or by using the storage API. Note that this works only with non-remote databases.
((OStorageEmbedded)db.getStorage()).acquireWriteLock(final ORID iRid)
((OStorageEmbedded)db.getStorage()).acquireSharedLock(final ORID iRid)
((OStorageEmbedded)db.getStorage()).releaseWriteLock(final ORID iRid)
((OStorageEmbedded)db.getStorage()).releaseSharedLock(final ORID iRid)
Source and examples of usage can be found on the official documentation.
Related
I'm having a hard time understanding the shape of the state that's derived applying that entity's events vs a projection of that entity's data.
Is an Aggregate's state ONLY used for determining whether or not a command can successfully be applied? Or should that state be usable in other ways?
An example - I have a Post entity for a standard blog post. I might have events like postCreated, postPublished, postUnpublished, etc. For my projections that I'll be persisting in my read tables, I need a projection for the base posts (which will include all posts, regardless of status, with lots of detail) as well as published_posts projection (which will only represent posts that are currently published with only the information necessary for rendering.
In the situation above, is my aggregate state ONLY supposed to be used to determine, for example, if a post can be published or unpublished, etc? If this is the case, is the shape of my state within the aggregate purely defined by what's required for these validations? For example, in my base post projection, I want to have a list of all users that have made a change to the post. In terms of validation for the aggregate/commands, I couldn't care less about the list of users that have made changes. Does that mean that this list should not be a part of my state within my aggregate?
TL;DR: yes - limit the "state" in the aggregate to that data that you choose to cache in support of data change.
In my aggregates, I distinguish two different ideas:
the history , aka the sequence of events that describes the changes in the lifetime of the aggregate
the cache, aka the data values we tuck away because querying the event history every time kind of sucks.
There's not a lot of value in caching results that we are never going to use.
One of the underlying lessons of CQRS is that we don't need aggregates everywhere
An AGGREGATE is a cluster of associated objects that we treat as a unit for the purpose of data changes. -- Evans, 2003
If we aren't changing the data, then we can safely work directly with immutable copies of the data.
The only essential purpose of the aggregate is to determine what events, if any, need to be applied to bring the aggregate's state in line with a command (if the aggregate can be brought so in line). All state that's not needed for that purpose can be offloaded to a read-side, which can be thought of as a remix of the event stream (with each read-side only maintaining the state it needs).
That said, there are in practice, reasons to use the aggregate state directly, with the primary one being a desire for a stronger consistency for the aggregate: CQRS is inherently eventually consistent. As with all questions of consistent updates, it's important to recognize that consistency isn't free and very often isn't even cheap; I tend to think of a project as having a consistency budget and I'm pretty miserly about spending it.
In your case, there's probably no reason to include the list of users changing a post in the aggregate state, unless e.g. there's something like "no single user can modify a given post more than n times".
Is there a way that I can ensure that any creation of a vertex in janusgraph with a given set of properties only results in one such vertex being created?
Right now, what I do is I traverse the graph and ensure that the number of vertices I find with particular properties is only one. For example:
val g = graph.traversal
val vertices = g.V().has("type", givenType).has("name", givenName).toList
if (vertices.size > 1) {
// the vertex is not unique, cannot add vertex
}
This can be done with the so called get or create traversal which is described in TinkerPop's Element Existence recipe and in the section Using coalesce to only add a vertex if it does not exist of the Practical Gremlin book.
For your example, this traversal would look like this:
g.V().has("type", givenType).has("name", givenName).
fold().
coalesce(unfold(),
addV("yourVertexLabel").
property("type", givenType).
property("name", givenName))
Note however, that it depends on the graph provider whether this is an atomic operation or not. In your case of JanusGraph, the existence check and the conditional vertex addition are executed with two different operations which can lead to a race condition when two threads execute this traversal at the same time in which case you can still end up with two vertices with these properties. So, you currently need to ensure that two threads can't execute this traversal for the same properties in parallel, e.g., with locks in your application.
I just published a blog post about exactly this topic: How to Avoid Doppelgängers in a Graph Database if you want to get more information about this topic in general. It also describes distributed locking as a way to implement locks for distributed systems and discusses possible improvements to better support upserts in JanusGraph in the future.
We were looking for the most suitable database for our innovative “collaboration application”. Sorry, we don’t know how to name it in a way generally understood. In fact, highly complicated relationships among tenants, roles, users, tasks and bills need to be handled effectively.
After reading 5 DBs(Postgrel, Mongo, Couch, Arango and Neo4J), when the words “… relationships among things are more important than things themselves” came to my eyes, I made up my mind to dig into OrientDB. Both the design philosophy and innovative features of OrientDB (multi-models, cluster, OO,native graph, full graph API, SQL-like, LiveQuery, multi-masters, auditing, simple RID and version number ...) keep intensifying my enthusiasm.
OrientDB enlightens me to re-think and try to model from a totally different viewpoint!
We are now designing the data structure based on OrientDB. However, there are some questions puzzling me.
LINK vs. EDGE
Take a case that a CLIENT may place thousands of ORDERs, how to choose between LINKs and EDGEs to store the relationships? I prefer EDGEs, but they seem like to store thousands of RIDs of ORDERs in the CLIENT record.
Embedded records’ Security
Can an embedded record be authorized independently from it’s container record?
Record-level Security
How does activating Record-level Security affect the query performance?
Hope I express clearly. Any words will be truly appreciated.
LINK vs EDGE
If you don't have properties on your arch you can use a link, instead if you have it use edges. You really need edges if you need to traverse the relationship in both directions, while using the linklist you can only in one direction (just like a hyperlink on the web), without the overhead of edges. Edges are the right choice if you need to walk thru a graph.Edges require more storage space than a linklist. Another difference between them it's the fact that if you have two vertices linked each other through a link A --> (link) B if you delete B, the link doesn't disappear it will remain but without pointing something. It is designed this way because when you delete a document, finding all the other documents that link to it would mean doing a full scan of the database, that typically takes ages to complete. The Graph API, with bi-directional links, is specifically designed to resolve this problem, so in general we suggest customers to use that, or to be careful and manage link consistency at application level.
RECORD - LEVEL SECURITY
Using 1 Million vertex and an admin user called Luke, doing a query like: select from where title = ? with an NOT_UNIQUE_HASH_INDEX the execution time it has been 0.027 sec.
OrientDB has the concept of users and roles, as well as Record Level Security. It also supports token based authentication, so it's possible to use OrientDB as your primary means of authorizing/authenticating users.
EMBEDDED RECORD'S SECURITY
I've made this example for trying to answer to your question
I have this structure:
If I want to access to the embedded data, I have to do this command: select prop from User
Because if I try to access it through the class that contains the type of car I won't have any type of result
select from Car
UPDATE
OrientDB supports that kind of authorization/authentication but it's a little bit different from your example. For example: if an user A, without admin permission, inserts a record, another user B can't see the record inserted by user A without admin permission. An User can see only the records that has inserted.
Hope it helps
I am trying to figure out how to manage a users game state using akka.
The game state will be persisted to mysql and this cannot change because we have other services that require this.
Anything that happens in a game is considered an "event".
Then you I have "Levels" which someone can achieve. A level is achieved when you complete all the "events" associated with it.
So you have:
Level
- event1 e.g. reach a point in the game
- event2 e.g. pickup a sword
- event3 e.g. defeat a monster
So in a game there are many levels, and 100's of events that are linked to levels.
So all "events" are sent via HTTP to my backend, and I save the event in the database.
I then have to load the users game profile in memory, and then re-calculate the Level's achieved since there was a new event that happened.
Note: This calculation cannot be done at the database level because it is a little more complicated that I am writing here.
The problem I see is that if I use akka, I can't have multiple actors processing the events for the same user, because the data can become stale.
Just to be clear, so when a new event arrives, I have to load the game profile in memory, loop through the levels and see if any of them have been achieved, if they have, update the database
e.g. update levels set achieved=true where level_id = 123 and user_id=234
e.g. actor1 loads the profile (all the levels and events for this user) and then processes the new event that just arrived in the inbox.
at the same time, actor2 loads the profile (same as actor1), and then processes the new event. When it persists the changes to mysql, the data will be out of sych.
If I was using threads, I would have to lock during the game profile calculation and persisting to the db.
How can I do this using Akka and be able to handle things in parallel, or is this scenerio not allow for it?
Let's think how you would manage it without actors. So, in nutshell, you have the following problem scenario:
two (or more) update requests arrive at the same time, both are
going to modify the same data
both requests read some stable data
state, then update it each in its own manner and persist to the DB
the modifications from the request which checked in first are lost, more precisely - overridden by the later request.
This is a classical problem. There are at least two classical solutions of it:
Optimistic locking
Pessimistic locking: it's usually achieved by applying Serializable isolation level for transactions.
It worth reading this answer with a nice comparison of both worlds.
As you're using Akka, you most probably want to prefer better concurrency and occasional failures, which are easy to recover. It goes on par with Akka motto let it crash.
So, you need to make the next steps:
Add version column to your table(s). It can be numeric or string (with hash). Numeric is the simplest one.
When you insert new record - initialize versions.
When you update the record - check version value has not changed. So, here's your update strategy:
Read record and its version.
Update record in memory.
Execute update query with criteria where rec_id=$id and version=$version.
If updated records count is 1 - you're good. If 0 - throw OptimisticLockException or smth like this.
Finally, it's time for Akka to do its job: come up with appropriate supervision strategy (I'd pick something like try again in 1 second). In actor's preRestart method return the update message back to the actor's mailbox (see Restart Hooks chapter in Akka docs).
With this strategy, even if two requests try to update the same record at a time, one of them will fail and will be immediately processed again.
Since Mongo doesn't have transactions that can be used to ensure that nothing is committed to the database unless its consistent (non corrupt) data, if my application dies between making a write to one document, and making a related write to another document, what techniques can I use to remove the corrupt data and/or recover in some way?
The greater idea behind NoSQL was to use a carefully modeled data structure for a specific problem, instead of hitting every problem with a hammer. That is also true for transactions, which should be referred to as 'short-lived transactions', because the typical RDBMS transaction hardly helps with 'real', long-lived transactions.
The kind of transaction supported by RDBMSs is often required only because the limited data model forces you to store the data across several tables, instead of using embedded arrays (think of the typical invoice / invoice items examples).
In MongoDB, try to use write-heavy, de-normalized data structures and keep data in a single document which improves read speed, data locality and ensures consistency. Such a data model is also easier to scale, because a single read only hits a single server, instead of having to collect data from multiple sources.
However, there are cases where the data must be read in a variety of contexts and de-normalization becomes unfeasible. In that case, you might want to take a look at Two-Phase Commits or choose a completely different concurrency approach, such as MVCC (in a sentence, that's what the likes of svn, git, etc. do). The latter, however, is hardly a drop-in replacement for RDBMs, but exposes a completely different kind of concurrency to a higher level of the application, if not the user.
Thinking about this myself, I want to identify some categories of affects:
Your operation has only one database save (saving data into one document)
Your operation has two database saves (updates, inserts, or deletions), A and B
They are independent
B is required for A to be valid
They are interdependent (A is required for B to be valid, and B is required for A to be valid)
Your operation has more than two database saves
I think this is a full list of the general possibilities. In case 1, you have no problem - one database save is atomic. In case 2.1, same thing, if they're independent, they might as well be two separate operations.
For case 2.2, if you do A first then B, at worst you will have some extra data (B data) that will take up space in your system, but otherwise be harmless. In case 2.3, you'll likely have some corrupt data in the event of a catastrophic failure. And case 3 is just a composition of case 2s.
Some examples for the different cases:
1.0. You change a car document's color to 'blue'
2.1. You change the car document's color to 'red' and the driver's hair color to 'red'
2.2. You create a new engine document and add its ID to the car document
2.3.a. You change your car's 'gasType' to 'diesel', which requires changing your engine to a 'diesel' type engine.
2.3.b. Another example of 2.3: You hitch car document A to another car document B, A getting the "towedBy" property set to B's ID, and B getting the "towing" property set to A's ID
3.0. I'll leave examples of this to your imagination
In many cases, its possible to turn a 2.3 scenario into a 2.2 scenario. In the 2.3.a example, the car document and engine are separate documents. Lets ignore the possibility of putting the engine inside the car document for this example. Its both invalid to have a diesel engine and non-diesel gas and to have a non-diesel engine and diesel gas. So they both have to change. But it may be valid to have no engine at all and have diesel gas. So you could add a step that makes the whole thing valid at all points. First, remove the engine, then replace the gas, then change the type of the engine, and lastly add the engine back onto the car.
If you will get corrupt data from a 2.3 scenario, you'll want a way to detect the corruption. In example 2.3.b, things might break if one document has the "towing" property, but the other document doesn't have a corresponding "towedBy" property. So this might be something to check after a catastrophic failure. Find all documents that have "towing" but the document with the id in that property doesn't have its "towedBy" set to the right ID. The choices there would be to delete the "towing" property or set the appropriate "towedBy" property. They both seem equally valid, but it might depend on your application.
In some situations, you might be able to find corrupt data like this, but you won't know what the data was before those things were set. In those cases, setting a default is probably better than nothing. Some types of corruption are better than others (particularly the kind that will cause errors in your application rather than simply incorrect display data).
If the above kind of code analysis or corruption repair becomes unfeasible, or if you want to avoid any data corruption at all, your last resort would be to take mnemosyn's suggestion and implement Two-Phase Commits, MVCC, or something similar that allows you to identify and roll back changes in an indeterminate state.