DDD, Event Sourcing, and the shape of the Aggregate state - aggregate

I'm having a hard time understanding the shape of the state that's derived applying that entity's events vs a projection of that entity's data.
Is an Aggregate's state ONLY used for determining whether or not a command can successfully be applied? Or should that state be usable in other ways?
An example - I have a Post entity for a standard blog post. I might have events like postCreated, postPublished, postUnpublished, etc. For my projections that I'll be persisting in my read tables, I need a projection for the base posts (which will include all posts, regardless of status, with lots of detail) as well as published_posts projection (which will only represent posts that are currently published with only the information necessary for rendering.
In the situation above, is my aggregate state ONLY supposed to be used to determine, for example, if a post can be published or unpublished, etc? If this is the case, is the shape of my state within the aggregate purely defined by what's required for these validations? For example, in my base post projection, I want to have a list of all users that have made a change to the post. In terms of validation for the aggregate/commands, I couldn't care less about the list of users that have made changes. Does that mean that this list should not be a part of my state within my aggregate?

TL;DR: yes - limit the "state" in the aggregate to that data that you choose to cache in support of data change.
In my aggregates, I distinguish two different ideas:
the history , aka the sequence of events that describes the changes in the lifetime of the aggregate
the cache, aka the data values we tuck away because querying the event history every time kind of sucks.
There's not a lot of value in caching results that we are never going to use.
One of the underlying lessons of CQRS is that we don't need aggregates everywhere
An AGGREGATE is a cluster of associated objects that we treat as a unit for the purpose of data changes. -- Evans, 2003
If we aren't changing the data, then we can safely work directly with immutable copies of the data.

The only essential purpose of the aggregate is to determine what events, if any, need to be applied to bring the aggregate's state in line with a command (if the aggregate can be brought so in line). All state that's not needed for that purpose can be offloaded to a read-side, which can be thought of as a remix of the event stream (with each read-side only maintaining the state it needs).
That said, there are in practice, reasons to use the aggregate state directly, with the primary one being a desire for a stronger consistency for the aggregate: CQRS is inherently eventually consistent. As with all questions of consistent updates, it's important to recognize that consistency isn't free and very often isn't even cheap; I tend to think of a project as having a consistency budget and I'm pretty miserly about spending it.
In your case, there's probably no reason to include the list of users changing a post in the aggregate state, unless e.g. there's something like "no single user can modify a given post more than n times".

Related

CQRS projections, joining data from different aggregates via probe commands

In CQRS when we need to create a custom-tailored projections for our read-models, we usually prefer a "denormalized" projections (assume we are talking about projecting onto a DB). It is not uncommon to have the information need by the application/UI come from different aggregates (possibly from different BCs).
Imagine we need a projected table to contain customer's information together with her full address and that Customer and Address are different aggregates in our system (possibly in different BCs). Meaning that, addresses are generated and maintained independently of customers. Or, in other words, when a new customer is created, there is no guarantee that there will be an AddressCreatedEvent subsequently produced by the system, this event may have already been processed prior to the creation of the customer. All we have at the time of CreateCustomerCommand is an UUID of an existing address.
We have several solutions here.
Enrich CreateCustomerCommand and the subsequent CustomerCreatedEvent to contain full address of the customer (looking up this information on the fly from the UI or the controller). This way the projection handler will just update the table directly upon receiving CustomerCreatedEvent.
Use the addrUuid provided in CustomerCreatedEvent to perform an ad-hoc query in the projection handler to get the missing part of the address information before updating the table.
These are commonly discussed solution to this problem. However, as noted by many others, there are problems with each approach. Enriching events can be difficult to justify as well described by Enrico Massone in this question, for example. Querying other views/projections (kind of JOINs) will work but introduces coupling (see the same link).
I would like describe another method here, which, as I believe, nicely addresses these concerns. I apologize beforehand for not giving a proper credit if this is a known technique. Sincerely, I have not seen it described elsewhere (at least not as explicitly).
"A picture speaks a thousand words", as they say:
The idea is that :
We keep CreateCustomerCommand and CustomerCreatedEvent simple with only addrUuid attribute (no enriching).
In API controller we send two commands to the command handler (aggregates): the first one, as usual, - CreateCustomerCommand to create customer and project customer information together with addrUuid to the table leaving other columns (full address, etc.) empty for time being. (Warning: See the update, we may have concurrency issue here and need to issue the probe command from a Saga.)
Right after this, and after we have obtained custUuid of the newly created customer, we issue a special ProbeAddrressCommand to Address aggregate triggering an AddressProbedEvent which will encapsulate the full state of the address together with the special attribute probeInitiatorUuid which is, of course our custUuid from the previous command.
The projection handler will then act upon AddressProbedEvent by simply filling in the missing pieces of the information in the table looking up the required row by matching the provided probeInitiatorUuid (i.e. custUuid) and addrUuid.
So we have two phases: create Customer and probe for the related Address. They are depicted in the diagram with (1) and (2) correspondingly.
Obviously, we can send as many such "probe" commands (in parallel) as needed by our projection: ProbeBillingCommand, ProbePreferencesCommand, etc. effectively populating or "filling in" the denormalized projection with missing data from each handled "probe" event.
The advantages of this method is that we keep the commands/events in the first phase simple (only UUIDs to other aggregates) all the while avoiding synchronous coupling (joining) of the projections. The whole approach has a nice EDA feeling about it.
My question is then: is this a known technique? Seems like I have not seen this... And what can go wrong with this approach?
I would be more then happy to update this question with any references to other sources which describe this method.
UPDATE 1:
There is one significant flaw with this approach that I can see already: command ProbeAddrressCommand cannot be issued before the projection handler had a chance to process CustomerCreatedEvent. But this is impossible to know from the API gateway (or controller).
The solution would probably involve a Saga, say CustomerAddressJoinProjectionSaga with will start upon receiving CustomerCreatedEvent and which will only then issue ProbeAddrressCommand. The Saga will end upon registering AddressProbedEvent. Or, if many other aggregates are involved in probing, when all such events have been received.
So here is the updated diagram.
UPDATE 2:
As noted by Levi Ramsey (see answer below) my example is rather convoluted with respect to the choice of aggregates. Indeed, Customer and Address are often conceptualized as belonging together (same Aggregate Root). So it is a better illustration of the problem to think of something like Student and Course instead, assuming for the sake of simplicity that there is a straightforward relation between the two: a student is taking a course. This way it is more obvious that Student and Course are independent aggregates (students and courses can be created and maintained at different times and different places in the system).
But the question still remains: how can we obtain a projection containing the full information about a student (full name, etc.) and the courses she is registered for (title, credits, the instructor's full name, prerequisites, etc.) all in the same table, if the UI requires it ?
A couple of thoughts:
I question why address needs to be a separate aggregate much less in a different bounded context, in view of the requirement that customers have an address. If in some other bounded context customer addresses are meaningful (e.g. you want to know "which addresses have more customers" etc.), then that context can subscribe to the events from the customer service.
As an alternative, if there's a particularly strong reason to model addresses separately from customers, why not have the read side prospectively listen for events from the address aggregate and store the latest address for a given address UUID in case there's a customer who ends up with that address. The reliability per unit effort of that approach is likely to be somewhat greater, I would expect.

understanding Lagoms persistent read side

I read through the Lagom documentation, and already wrote a few small services that interact with each other. But because this is my first foray into CQRS i still have a few conceptual issues about the persistent read side that i don't really understand.
For instance, i have a user-service that keeps a list of users (as aggregates) and their profile data like email addresses, names, addresses, etc.
The questions i have now are
if i want to retrieve the users profile given a certain email-address, should i query the read side for the users id, and then query the event-store using this id for the profile data? or should the read side already keep all profile information?
If the read side has all information, what is the reason for the event-store? If its truly write-only, it's not really useful is it?
Should i design my system that i can use the event-store as much as possible or should i have a read side for everything? what are the scalability implications?
if the user-model changes (for instance, the profile now includes a description of the profile) and i use a read-side that contains all profile data, how do i update this read side in lagom to now also contain this description?
Following that question, should i keep different read-side tables for different fields of the profile instead of one table containing the whole profile
if a different service needs access to the data, should it always ask the user-service, or should it keep its own read side as needed? In case of the latter, doesn't that violate the CQRS principle that the service that owns the data should be the only one reading and writing that data?
As you can see, this whole concept hasn't really 'clicked' yet, and i am thankful for answers and/or some pointers.
if i want to retrieve the users profile given a certain email-address, should i query the read side for the users id, and then query the event-store using this id for the profile data? or should the read side already keep all profile information?
You should use a specially designed ReadModel for searching profiles using the email address. You should query the Event-store only to rehydrate the Aggregates, and you rehydrate the Aggregates only to send them commands, not queries. In CQRS an Aggregate may not be queried.
If the read side has all information, what is the reason for the event-store? If its truly write-only, it's not really useful is it?
The Event-store is the source of truth for the write side (Aggregates). It is used to rehydrate the Aggregates (they rebuild their internal & private state based on the previous emitted events) before the process commands and to persist the new events. So the Event-store is append-only but also used to read the event-stream (the events emitted by an Aggregate instance). The Event-store ensures that an Aggregate instance (that is, identified by a type and an ID) processes only a command at a time.
if the user-model changes (for instance, the profile now includes a description of the profile) and i use a read-side that contains all profile data, how do i update this read side in lagom to now also contain this description?
I don't use any other framework but my own but I guess that you rewrite (to use the new added field on the events) and rebuild the ReadModel.
Following that question, should i keep different read-side tables for different fields of the profile instead of one table containing the whole profile
You should have a separate ReadModel (with its own table(s)) for each use case. The ReadModel should be blazing fast, this means it should be as small as possible, only with the fields needed for that particular use case. This is very important, it is one of the main benefits of using CQRS.
if a different service needs access to the data, should it always ask the user-service, or should it keep its own read side as needed? In case of the latter, doesn't that violate the CQRS principle that the service that owns the data should be the only one reading and writing that data?
Here depends on you, the architect. It is preferred that each ReadModel owns its data, that is, it should subscribe to the right events, it should not depend on other ReadModels. But this leads to a lot of code duplication. In my experience I've seen a desire to have some canonical ReadModels that own some data but also can share it on demand. For this, in CQRS, there is also the term query. Just like commands and events, queries can travel in your system, but only from ReadModel to ReadModel.
Queries should not be sent during a client's request. They should be sent only in the background, as an asynchronous synchronization mechanism. This is an important aspect that influences the resilience and responsiveness of your system.
I've use also live queries, that are pushed from the authoritative ReadModels to the subscribed ReadModels in real time, when the answer changes.
In case of the latter, doesn't that violate the CQRS principle that the service that owns the data should be the only one reading and writing that data?
No, it does not. CQRS does not specify how the R (Read side) is updated, only that the R should not process commands and C should not be queried.

CQRS event store aggregate vs projection

In a CQRS event store, does an "aggregate" contain a summarized view of the events or simply a reference to the boundary of those events? (group id)
A projection is a view or representation of events so in the case of an aggregate representing a boundary that would make sense to me whereas if the aggregate contained the current summarized state I'd be confused about duplication between the two.
In a CQRS event store, does an "aggregate" contain a summarized view of the events or simply a reference to the boundary of those events? (group id)
Aggregates don't exist in the event store
Events live in the event store
Aggregates live in the write model (the C of CQRS)
Aggregate, in this case, still has the same basic meaning that it had in the "Blue Book"; it's the term for a boundary around one or more entities that are immediately consistent with each other. The responsibility of the aggregate is to ensure that writes (commands) to the book of record respect the business invariant.
It's typically convenient, in an event store, to organize the events into "streams"; if you imagine a RDBMS schema, the stream id will just be some identifier that says "these events are all part of the same history."
It will usually be the case that one aggregate -> one stream, but usually isn't always; there are some exceptional cases you may need to handle when you change your model. Greg Young is covering some of these in his new eBook on event versioning.
So it's possible that the same data structure might exist in the aggregate and query side store (duplicated view used for different purposes).
Yes, and no. It's absolutely the case that the data structures used when validating a write match those used to support a query. But the storage doesn't usually match. Put another way, aggregates don't get stored (the state of the aggregate does); whereas it is fairly common that the query view gets cached (again, not the data structure itself, but a representation that can be used to repopulate the data structure without necessarily needing to replay all of the events).
Any chance you have an example of aggregate state data structure (rdbms)? Every example I've found is trimmed down to a few columns with something like include id, source_id, version making it difficult to visualize what the scope of an aggregate is
A common example would be that of a trading book (an aggregate responsible for matching "buy" and "sell" orders).
In a traditional RDBMS store, that would probably look like a row in a books table, with a unique id for the book, information about what item that book is tracking, date information about when that book is active, and so on. In addition, there's likely to be some sort of orders table, with uniq ids, a trading book id, order type, transaction numbers, prices and volumes (in other words, all of the information the aggregate needs to know to satisfy its invariant).
In a document store, you'd see all of that information in a single document -- perhaps a json document with the information about the root object, and two lists of order objects (one for buys, one for sells).
In an event store, you'd see the individual OrderPlaced, TradeOccurred, OrderCancelled.
it seems that the aggregate is computed using the entire set of events unless it gets large enough to warrant a snapshot.
Yes, that's exactly right. If you are familiar with a "fold function", then event sourcing is just a fold from some common initial state. When a snapshot is available, we'll fold from that state (with a corresponding reduction in the number of events that get folded in)
In an event sourced environment with "snapshots", you might see a combination of the event store and the document store (where the document would include additional meta information indicating where in the event stream it had been assembled).

How to handle application death and other mid-operation faults with Mongo DB

Since Mongo doesn't have transactions that can be used to ensure that nothing is committed to the database unless its consistent (non corrupt) data, if my application dies between making a write to one document, and making a related write to another document, what techniques can I use to remove the corrupt data and/or recover in some way?
The greater idea behind NoSQL was to use a carefully modeled data structure for a specific problem, instead of hitting every problem with a hammer. That is also true for transactions, which should be referred to as 'short-lived transactions', because the typical RDBMS transaction hardly helps with 'real', long-lived transactions.
The kind of transaction supported by RDBMSs is often required only because the limited data model forces you to store the data across several tables, instead of using embedded arrays (think of the typical invoice / invoice items examples).
In MongoDB, try to use write-heavy, de-normalized data structures and keep data in a single document which improves read speed, data locality and ensures consistency. Such a data model is also easier to scale, because a single read only hits a single server, instead of having to collect data from multiple sources.
However, there are cases where the data must be read in a variety of contexts and de-normalization becomes unfeasible. In that case, you might want to take a look at Two-Phase Commits or choose a completely different concurrency approach, such as MVCC (in a sentence, that's what the likes of svn, git, etc. do). The latter, however, is hardly a drop-in replacement for RDBMs, but exposes a completely different kind of concurrency to a higher level of the application, if not the user.
Thinking about this myself, I want to identify some categories of affects:
Your operation has only one database save (saving data into one document)
Your operation has two database saves (updates, inserts, or deletions), A and B
They are independent
B is required for A to be valid
They are interdependent (A is required for B to be valid, and B is required for A to be valid)
Your operation has more than two database saves
I think this is a full list of the general possibilities. In case 1, you have no problem - one database save is atomic. In case 2.1, same thing, if they're independent, they might as well be two separate operations.
For case 2.2, if you do A first then B, at worst you will have some extra data (B data) that will take up space in your system, but otherwise be harmless. In case 2.3, you'll likely have some corrupt data in the event of a catastrophic failure. And case 3 is just a composition of case 2s.
Some examples for the different cases:
1.0. You change a car document's color to 'blue'
2.1. You change the car document's color to 'red' and the driver's hair color to 'red'
2.2. You create a new engine document and add its ID to the car document
2.3.a. You change your car's 'gasType' to 'diesel', which requires changing your engine to a 'diesel' type engine.
2.3.b. Another example of 2.3: You hitch car document A to another car document B, A getting the "towedBy" property set to B's ID, and B getting the "towing" property set to A's ID
3.0. I'll leave examples of this to your imagination
In many cases, its possible to turn a 2.3 scenario into a 2.2 scenario. In the 2.3.a example, the car document and engine are separate documents. Lets ignore the possibility of putting the engine inside the car document for this example. Its both invalid to have a diesel engine and non-diesel gas and to have a non-diesel engine and diesel gas. So they both have to change. But it may be valid to have no engine at all and have diesel gas. So you could add a step that makes the whole thing valid at all points. First, remove the engine, then replace the gas, then change the type of the engine, and lastly add the engine back onto the car.
If you will get corrupt data from a 2.3 scenario, you'll want a way to detect the corruption. In example 2.3.b, things might break if one document has the "towing" property, but the other document doesn't have a corresponding "towedBy" property. So this might be something to check after a catastrophic failure. Find all documents that have "towing" but the document with the id in that property doesn't have its "towedBy" set to the right ID. The choices there would be to delete the "towing" property or set the appropriate "towedBy" property. They both seem equally valid, but it might depend on your application.
In some situations, you might be able to find corrupt data like this, but you won't know what the data was before those things were set. In those cases, setting a default is probably better than nothing. Some types of corruption are better than others (particularly the kind that will cause errors in your application rather than simply incorrect display data).
If the above kind of code analysis or corruption repair becomes unfeasible, or if you want to avoid any data corruption at all, your last resort would be to take mnemosyn's suggestion and implement Two-Phase Commits, MVCC, or something similar that allows you to identify and roll back changes in an indeterminate state.

Recreate a graph that change in time

I have an entity in my domain that represent a city electrical network. Actually my model is an entity with a List that contains breakers, transformers, lines.
The network change every time a breaker is opened/closed, user can change connections etc...
In all examples of CQRS the EventStore is queried with Version and aggregateId.
Do you think I have to implement events only for the "network" aggregate or also for every "Connectable" item?
In this case when I have to replay all events to get the "actual" status (based on a date) I can have near 10000-20000 events to process.
An Event modify one property or I need an Event that modify an object (containing all properties of the object)?
Theres always an exception to the rule but I think you need to have an event for every command handled in your domain. You can get around the problem of processing so many events by making use of Snapshots.
http://thinkbeforecoding.com/post/2010/02/25/Event-Sourcing-and-CQRS-Snapshots
I assume you mean currently your "connectable items" are part of the "network" aggregate and you are asking if they should be their own aggregate? That really depends on the nature of your system and problem and is more of a DDD issue than simple a CQRS one. However if the nature of your changes is typically to operate on the items independently of one another then then should probably be aggregate roots themselves. Regardless in order to answer that question we would need to know much more about the system you are modeling.
As for the challenge of replaying thousands of events, you certainly do not have to replay all your events for each command. Sure snapshotting is an option, but even better is caching the aggregate root objects in memory after they are first loaded to ensure that you do not have to source from events with each command (unless the system crashes, in which case you can rely on snapshots for quicker recovery though you may not need them with caching since you only pay the penalty of loading once).
Now if you are distributing this system across multiple hosts or threads there are some other issues to consider but I think that discussion is best left for another question or the forums.
Finally you asked (I think) can an event modify more than one property of the state of an object? Yes if that is what makes sense based on what that event represents. The idea of an event is simply that it represents a state change in the aggregate, however these events should also represent concepts that make sense to the business.
I hope that helps.