Since 1 week, i try to do a Perceptron neural network with one layer(in Java). I use an function Heavyside to calculate the exit of neurons, and the algorithme of Widrow-Hoff for the machine learning.
My problem is, after the learning, i give some example to my computer and sometimes he answers correctly, sometimes he answers badly. So my question is : "It's possible for a computer, after the learning, he give me a bad answers?"
For exemple, I give this:
1 and 1 = ?
The first time, he give me : 1,
The second time : 0,
The third time : 1
Yes, if you are learning using a gradient descent algorithm then the network can converge to a sub-optimal solution.
In order to combat this you can try modifying your learning rate or using a decaying learning rate.
Related
I've started working on Forward and back propagation of neural networks. I've coded it as-well and works properly too. But i'm confused in the algorithm itself. I'm new to Neural Networks.
So Forward propagation of neural networks is finding the right label with the given weights?
and Back-propagation is using forward propagation to find the most error free parameters by minimizing cost function and using these parameters to help classify other training examples? And this is called a trained Neural Network?
I feel like there is a big blunder in my concept if there is please let me know where i'm wrong and why i am wrong.
I will try my best to explain forward and back propagation in a detailed yet simple to understand manner, although it's not an easy topic to do.
Forward Propagation
Forward propagation is the process in a neural network where-by during the runtime of the network, values are fed into the front of the neural network, (the inputs). You can imagine that these values then travel across the weights which multiply the original value from the inputs by themselves. They then arrive at the hidden layer (neurons). Neurons vary quite a lot based on different types of networks, but here is one way of explaining it. When the values reach the neuron they go through a function where every single value being fed into the neuron is summed up and then fed into an activation function. This activation function can be very different depending on the use-case but let's take for example a linear activation function. It essentially gets the value being fed into it and then it rounds it to a 0 or 1. It is then fed through more weights and then it is spat out into the outputs. Which is the last step into the network.
You can imagine this network with this diagram.
Back Propagation
Back propagation is just like forward propagation except we work backwards from where we were in forward propagation.
The aim of back propagation is to reduce the error in the training phase (trying to get the neural network as accurate as possible). The way this is done is by going backwards through the weights and layers. At each weight the error is calculated and each weight is individually adjusted using an optimization algorithm; optimization algorithm is exactly what it sounds like. It optimizes the weights and adjusts their values to make the neural network more accurate.
Some optimization algorithms include gradient descent and stochastic gradient descent. I will not go through the details in this answer as I have already explained them in some of my other answers (linked below).
The process of calculating the error in the weights and adjusting them accordingly is the back-propagation process and it is usually repeated many times to get the network as accurate as possible. The number of times you do this is called the epoch count. It is good to learn the importance of how you should manage epochs and batch sizes (another topic), as these can severely impact the efficiency and accuracy of your network.
I understand that this answer may be hard to follow, but unfortunately this is the best way I can explain this. It is expected that you might not understand this the first time you read it, but remember this is a complicated topic. I have a linked a few more resources down below including a video (not mine) that explains these processes even better than a simple text explanation can. But I also hope my answer may have resolved your question and have a good day!
Further resources:
Link 1 - Detailed explanation of back-propagation.
Link 2 - Detailed explanation of stochastic/gradient-descent.
Youtube Video 1 - Detailed explanation of types of propagation.
Credits go to Sebastian Lague
I'm trying to navigate an agent in a n*n gridworld domain by using Q-Learning + a feedforward neural network as a q-function approximator. Basically the agent should find the best/shortest way to reach a certain terminal goal position (+10 reward). Every step the agent takes it gets -1 reward. In the gridworld there are also some positions the agent should avoid (-10 reward, terminal states,too).
So far I implemented a Q-learning algorithm, that saves all Q-values in a Q-table and the agent performs well.
In the next step, I want to replace the Q-table by a neural network, trained online after every step of the agent. I tried a feedforward NN with one hidden layer and four outputs, representing the Q-values for the possible actions in the gridworld (north,south,east, west).
As input I used a nxn zero-matrix, that has a "1" at the current positions of the agent.
To reach my goal I tried to solve the problem from the ground up:
Explore the gridworld with standard Q-Learning and use the Q-map as training data for the Network once Q-Learning is finished
--> worked fine
Use Q-Learning and provide the updates of the Q-map as trainingdata
for NN (batchSize = 1)
--> worked good
Replacy the Q-Map completely by the NN. (This is the point, when it gets interesting!)
-> FIRST MAP: 4 x 4
As described above, I have 16 "discrete" Inputs, 4 Output and it works fine with 8 neurons(relu) in the hidden layer (learning rate: 0.05). I used a greedy policy with an epsilon, that reduces from 1 to 0.1 within 60 episodes.
The test scenario is shown here. Performance is compared beetween standard qlearning with q-map and "neural" qlearning (in this case i used 8 neurons and differnt dropOut rates).
To sum it up: Neural Q-learning works good for small grids, also the performance is okay and reliable.
-> Bigger MAP: 10 x 10
Now I tried to use the neural network for bigger maps.
At first I tried this simple case.
In my case the neural net looks as following: 100 input; 4 Outputs; about 30 neurons(relu) in one hidden layer; again I used a decreasing exploring factor for greedy policy; over 200 episodes the learning rate decreases from 0.1 to 0.015 to increase stability.
At frist I had problems with convergence and interpolation between single positions caused by the discrete input vector.
To solve this I added some neighbour positions to the vector with values depending on thier distance to the current position. This improved the learning a lot and the policy got better. Performance with 24 neurons is seen in the picture above.
Summary: the simple case is solved by the network, but only with a lot of parameter tuning (number of neurons, exploration factor, learning rate) and special input transformation.
Now here are my questions/problems I still haven't solved:
(1) My network is able to solve really simple cases and examples in a 10 x 10 map, but it fails as the problem gets a bit more complex. In cases where failing is very likely, the network has no change to find a correct policy.
I'm open minded for any idea that could improve performace in this cases.
(2) Is there a smarter way to transform the input vector for the network? I'm sure that adding the neighboring positons to the input vector on the one hand improve the interpolation of the q-values over the map, but on the other hand makes it harder to train special/important postions to the network. I already tried standard cartesian two-dimensional input (x/y) on an early stage, but failed.
(3) Is there another network type than feedforward network with backpropagation, that generally produces better results with q-function approximation? Have you seen projects, where a FF-nn performs well with bigger maps?
It's known that Q-Learning + a feedforward neural network as a q-function approximator can fail even in simple problems [Boyan & Moore, 1995].
Rich Sutton has a question in the FAQ of his web site related with this.
A possible explanation is the phenomenok known as interference described in [Barreto & Anderson, 2008]:
Interference happens when the update of one state–action pair changes the Q-values of other pairs, possibly in the wrong direction.
Interference is naturally associated with generalization, and also happens in conventional supervised learning. Nevertheless, in the reinforcement learning paradigm its effects tend to be much more harmful. The reason for this is twofold. First, the combination of interference and bootstrapping can easily become unstable, since the updates are no longer strictly local. The convergence proofs for the algorithms derived from (4) and (5) are based on the fact that these operators are contraction mappings, that is, their successive application results in a sequence converging to a fixed point which is the solution for the Bellman equation [14,36]. When using approximators, however, this asymptotic convergence is lost, [...]
Another source of instability is a consequence of the fact that in on-line reinforcement learning the distribution of the incoming data depends on the current policy. Depending on the dynamics of the system, the agent can remain for some time in a region of the state space which is not representative of the entire domain. In this situation, the learning algorithm may allocate excessive resources of the function approximator to represent that region, possibly “forgetting” the previous stored information.
One way to alleviate the interference problem is to use a local function approximator. The more independent each basis function is from each other, the less severe this problem is (in the limit, one has one basis function for each state, which corresponds to the lookup-table case) [86]. A class of local functions that have been widely used for approximation is the radial basis functions (RBFs) [52].
So, in your kind of problem (n*n gridworld), an RBF neural network should produce better results.
References
Boyan, J. A. & Moore, A. W. (1995) Generalization in reinforcement learning: Safely approximating the value function. NIPS-7. San Mateo, CA: Morgan Kaufmann.
André da Motta Salles Barreto & Charles W. Anderson (2008) Restricted gradient-descent algorithm for value-function approximation in reinforcement learning, Artificial Intelligence 172 (2008) 454–482
Having neural network with alot of inputs causes my network problems like
Neural network gets stuck and feed forward calculation always gives output as
1.0 because of the output sum being too big and while doing backpropagation, sum of gradients will be too high what causes the
learning speed to be too dramatic.
Neural network is using tanh as an active function in all layers.
Giving alot of thought, I came up with following solutions:
Initalizing smaller random weight values ( WeightRandom / PreviousLayerNeuronCount )
or
After calculation the sum of either outputs or gradients, dividing the sum with the number of 'neurons in previus layer for output sum' and number of 'neurons in next layer for gradient sum' and then passing sum into activation/derivative function.
I don't feel comfortable with solutions I came up with.
Solution 1. does not solve problem entirely. Possibility of gradient or output sum getting to high is still there. Solution 2. seems to solve the problem but I fear that it completely changes network behavior in a way that it might not solve some problems anymore.
What would you suggest me in this situation, keeping in mind that reducing neuron count in layers is not an option?
Thanks in advance!
General things that affect the output backpropagation include weights and biases of early elections, the number of hidden units, the amount of exercise patterns, and long iterations. As an alternative way, the selection of initial weights and biases there are several algorithms that can be used, one of which is an algorithm Nguyen widrow. You can use it to initialize the weights and biases early, I've tried it and gives good results.
I use a neural network with 3 layers for categorization problem: 1) ~2k neurons 2) ~2k neurons 3) 20 neurons. My training set consists of 2 examples, most of the inputs in each example are zeros. For some reason after the backpropagation training the network gives virtually the same output for both examples (which is either valid for only 1 of examples or have 1.0 for outputs where one of example has 1s). It comes to this state after the first epoch and doesn't change much afterwards, even if learning rate is minimal double vale. I use sigmoid as activation function.
I thought it could be something wrong with my code so I've used AForge open source library, and seems like it suffers from the same issue.
What might be the problem here?
Solution: I've removed one layer and decreased the number of neurons in hidden layer to 800
2000 by 2000 by 20 is huge. That's approximately 4 million weights to determine, meaning the algorithm has to search a 4-million-dimensional space. Any optimization algorithm will be totally at a loss in this case. I'm assuming you're using gradient descent, which is not even that powerful, so likely the algorithm is stuck in a local optimum somewhere in this gigantic search space.
Simplify your model!
Added:
And please also describe in more detail what you're trying to do. Do you really have only 2 training examples? That's like trying to categorize 2 points using a 4-million-dimensional plane. It doesn't make sense to me.
You mentioned that most of the inputs are zero. To your reduce the size of your search space, try removing redundancy in your training examples. For instance if
trainingExample[0].inputValue[i] == trainingExample[1].inputValue[i]
then x.inputValue[i] has no information bearing data for the NN.
Also, perhaps it's not clear, but it seems that two training examples seem small.
I am new to neural networks and, to get grip on the matter, I have implemented a basic feed-forward MLP which I currently train through back-propagation. I am aware that there are more sophisticated and better ways to do that, but in Introduction to Machine Learning they suggest that with one or two tricks, basic gradient descent can be effective for learning from real world data. One of the tricks is adaptive learning rate.
The idea is to increase the learning rate by a constant value a when the error gets smaller, and decrease it by a fraction b of the learning rate when the error gets larger. So basically the learning rate change is determined by:
+(a)
if we're learning in the right direction, and
-(b * <learning rate>)
if we're ruining our learning. However, on the above book there's no advice on how to set these parameters. I wouldn't expect a precise suggestion since parameter tuning is a whole topic on its own, but just a hint at least on their order of magnitude. Any ideas?
Thank you,
Tunnuz
I haven't looked at neural networks for the longest time (10 years+) but after I saw your question I thought I would have a quick scout about. I kept seeing the same figures all over the internet in relation to increase(a) and decrease(b) factor (1.2 & 0.5 respectively).
I have managed to track these values down to Martin Riedmiller and Heinrich Braun's RPROP algorithm (1992). Riedmiller and Braun are quite specific about sensible parameters to choose.
See: RPROP: A Fast Adaptive Learning Algorithm
I hope this helps.