Get .df schema timings - progress-4gl

I am running a .df file on tables of varying size and would like to gather timings for how long each item (add column, add unique index, etc.) in a .df takes to apply on each of these tables. One approach I have used is to partition the delta by individual items and run them separately, but this as a whole takes longer than running them as one .df and I would like the most accurate timings possible. Is there a feature in openedge such as adding extra logging, outputting results, etc. that would allow me to gather timings on how long these items take to run?

If you extract load_df.p from prodict (Here's the KB http://knowledgebase.progress.com/articles/Article/15884),
you can customize to add your own logging, so it will suit your needs. I'm pretty sure it would be simple to code.
But answering your original question, I can't think of any default extra logging option to give you that kind of information.

If you start your session you use to load you df with
-clientlog "c:\tmp\mylog.log" -logentrytypes "4GLTrace" -logginglevel 2
then you should get a trace through the code along with time stamps and so on. I've no idea if it will do what you want, but it's worth a try!

Related

How to select column which are needed to create report in tableau

I have tableau desktop. I am creating a report using 5 tables out of 5 table 2 tables are big. These tables are joined and applied filter. extract creation taking a long time (6-7 hours and still running). big tables have 100+ columns, I use only 12 columns to build my report.
Now, there is an option to use custom SQL which take less time for creating extract but then I cannot use tableau to its full potential.
any suggestion is welcome. I am looking for the name of the column I can choose for creating the extract.
Follow Process:
Make database connection
Join tables
Go to sheet and take required fields needed in report then right click on connection and create a extract then don't forget to click Hide unused fields and then apply required filtering and create a extract
This process should show you only required fields out of all fields.
Especially for very large extracts, you can also consider the option to aggregate to visible dimensions when making an extract. That can dramatically reduce the size of the extract and time to create and access it. But that option requires care to be sure you use the faster extract in a way that still gets accurate results. There are assumptions built in to that feature.
An extract is really a cached query result. If you perform aggregation when creating the extract, you can compute totals, mins, max, avg etc during extract creation, and then simply display the aggregate values in Tableau. This can save a lot of time. Of course, you can’t then further drill down past the level of detail in the extract in that case.
More importantly, if you perform further aggregation in Tableau, you have to be careful that the double aggregation gives the result you intend. Some functions are always safe — sums of sums, mins of mins, maxes of maxes always give the same answer as if you only did one large aggregation operation. These are called additive operations. Other combinations may or may not give the result you intend, averages of averages, and definitely countd of countd can be unexpected - although sometimes repeated aggregation can be well defined - averages of daily sums can make sense for example.
So performing aggregation during extract creation can lead to huge performance gains at visualization time - you effectively precompute much or all of the information you need to display. You just have to understand how it works and use accordingly. Experiment.
By the way, that feature uses the default aggregation defined for each measure in the data source. Usually SUM(). You can change that in the data pane.

Reduce time taken to compute filters in Tableau

I have a dashboard where I have kept all the filters used in the dashboard as global filters and most used filters I have put as context filters,
The problem is the time taken to compute filters is about 1-2 minutes,How can I reduce this time taken in computing these filters
I have about 2 Million of extracted data, on Oracle with Tableau 9.3
Adding to Aron's point, you can also use a custom SQL to select only the dimensions and measures which you are going to use for the dashboard. I have worked on big data and it used to take around 5-7 mins to load the dashboard. Finally, ended up using custom sql and removing unnecessary filters and parameters. :)
There are several things you can look at it to guide performance optimization, but the details matter.
Custom SQL can help or hurt performance (more often hurt because it prevents some query optimizations). Context filters can help or hurt depending on user behavior. Extracts usually help, especially when aggregated.
An extremely good place to start is the following white paper by Alan Eldridge
http://www.tableau.com/learn/whitepapers/designing-efficient-workbooks

Analyse Database Table and Usage

I just got into a new company and my task is to optimize the Database performance. One possible (and suggested) way would be to use multiple servers instead of one. As there are many possible ways to do that, i need to analyse the DB first. Is there a tool with which i can measure how many Inserts/Updates and Deletes are performed for each table?
I agree with Surfer513 that the DMV is going to be much better than CDC. Adding CDC is fairly complex and will add a load to the system. (See my article here for statistics.)
I suggest first setting up a SQL Server Trace to see which commands are long-running.
If your system makes heavy use of stored procedures (which hopefully it does), also check out sys.dm_exec_procedure_stats. That will help you to concentrate on the procedures/tables/views that are being used most-often. Look at execution_count and total_worker_time.
The point is that you want to determine which parts of your system are slow (using Trace) so that you know where to spend your time.
One way would be to utilize Change Data Capture (CDC) or Change Tracking. Not sure how in depth you are looking for with this, but there are other simpler ways to get a rough estimate (doesn't look like you want exacts, just ballpark figures..?).
Assuming that there are indexes on your tables, you can query sys.dm_db_index_operational_stats to get data on inserts/updates/deletes that affect the indexes. Again, this is a rough estimate but it'll give you a decent idea.

realtime querying/aggregating millions of records - hadoop? hbase? cassandra?

I have a solution that can be parallelized, but I don't (yet) have experience with hadoop/nosql, and I'm not sure which solution is best for my needs. In theory, if I had unlimited CPUs, my results should return back instantaneously. So, any help would be appreciated. Thanks!
Here's what I have:
1000s of datasets
dataset keys:
all datasets have the same keys
1 million keys (this may later be 10 or 20 million)
dataset columns:
each dataset has the same columns
10 to 20 columns
most columns are numerical values for which we need to aggregate on (avg, stddev, and use R to calculate statistics)
a few columns are "type_id" columns, since in a particular query we may
want to only include certain type_ids
web application
user can choose which datasets they are interested in (anywhere from 15 to 1000)
application needs to present: key, and aggregated results (avg, stddev) of each column
updates of data:
an entire dataset can be added, dropped, or replaced/updated
would be cool to be able to add columns. But, if required, can just replace the entire dataset.
never add rows/keys to a dataset - so don't need a system with lots of fast writes
infrastructure:
currently two machines with 24 cores each
eventually, want ability to also run this on amazon
I can't precompute my aggregated values, but since each key is independent, this should be easily scalable. Currently, I have this data in a postgres database, where each dataset is in its own partition.
partitions are nice, since can easily add/drop/replace partitions
database is nice for filtering based on type_id
databases aren't easy for writing parallel queries
databases are good for structured data, and my data is not structured
As a proof of concept I tried out hadoop:
created a tab separated file per dataset for a particular type_id
uploaded to hdfs
map: retrieved a value/column for each key
reduce: computed average and standard deviation
From my crude proof-of-concept, I can see this will scale nicely, but I can see hadoop/hdfs has latency I've read that that it's generally not used for real time querying (even though I'm ok with returning results back to users in 5 seconds).
Any suggestion on how I should approach this? I was thinking of trying HBase next to get a feel for that. Should I instead look at Hive? Cassandra? Voldemort?
thanks!
Hive or Pig don't seem like they would help you. Essentially each of them compiles down to one or more map/reduce jobs, so the response cannot be within 5 seconds
HBase may work, although your infrastructure is a bit small for optimal performance. I don't understand why you can't pre-compute summary statistics for each column. You should look up computing running averages so that you don't have to do heavy weight reduces.
check out http://en.wikipedia.org/wiki/Standard_deviation
stddev(X) = sqrt(E[X^2]- (E[X])^2)
this implies that you can get the stddev of AB by doing
sqrt(E[AB^2]-(E[AB])^2). E[AB^2] is (sum(A^2) + sum(B^2))/(|A|+|B|)
Since your data seems to be pretty much homogeneous, I would definitely take a look at Google BigQuery - You can ingest and analyze the data without a MapReduce step (on your part), and the RESTful API will help you create a web application based on your queries. In fact, depending on how you want to design your application, you could create a fairly 'real time' application.
It is serious problem without immidiate good solution in the open source space. In commercial space MPP databases like greenplum/netezza should do.
Ideally you would need google's Dremel (engine behind BigQuery). We are developing open source clone, but it will take some time...
Regardless of the engine used I think solution should include holding the whole dataset in memory - it should give an idea what size of cluster you need.
If I understand you correctly and you only need to aggregate on single columns at a time
You can store your data differently for better results
in HBase that would look something like
table per data column in today's setup and another single table for the filtering fields (type_ids)
row for each key in today's setup - you may want to think how to incorporate your filter fields into the key for efficient filtering - otherwise you'd have to do a two phase read (
column for each table in today's setup (i.e. few thousands of columns)
HBase doesn't mind if you add new columns and is sparse in the sense that it doesn't store data for columns that don't exist.
When you read a row you'd get all the relevant value which you can do avg. etc. quite easily
You might want to use a plain old database for this. It doesn't sound like you have a transactional system. As a result you can probably use just one or two large tables. SQL has problems when you need to join over large data. But since your data set doesn't sound like you need to join, you should be fine. You can have the indexes setup to find the data set and the either do in SQL or in app math.

What's the fastest way to save data and read it next time in a IPhone App?

In my dictionary IPhone app I need to save an array of strings which actually contains about 125.000 distinct words; this transforms in aprox. 3.2Mb of data.
The first time I run the app I get this data from an SQLite db. As it takes ages for this query to run, I need to save the data somehow, to read it faster each time the app launches.
Until now I've tried serializing the array and write it to a file, and afterword I've tested if writing directly to NSUserDefaults to see if there's any speed gain but there's none. In both ways it takes about 7 seconds on the device to load the data. It seems that not reading from the file (or NSUserDefaults) actually takes all that time, but the deserialization does:
objectsForCharacters = [[NSKeyedUnarchiver unarchiveObjectWithData:data] retain];
Do you have any ideeas about how I could write this data structure somehow that I could read/put in memory it faster?
The UITableView is not really designed to handle 10s of thousands of records. If would take a long time for a user to find what they want.
It would be better to load a portion of the table, perhaps a few hundred rows, as the user enters data so that it appears they have all the records available to them (Perhaps providing a label which shows the number of records that they have got left in there filtered view.)
The SQLite db should be perfect for this job. Add an index to the words table and then select a limited number of rows from it to show the user some progress. Adding an index makes a big difference to the performance of the even this simple table.
For example, I created two tables in a sqlite db and populated them with around 80,000 words
#Create and populate the indexed table
create table words(word);
.import dictionary.txt words
create unique index on words_index on word DESC;
#Create and populate the unindexed table
create table unindexed_words(word);
.import dictionary.txt unindexed_words
Then I ran the following query and got the CPU Time taken for each query
.timer ON
select * from words where word like 'sn%' limit 5000;
...
>CPU Time: user 0.031250 sys 0.015625;
select * from unindex_words where word like 'sn%' limit 5000;
...
>CPU Time: user 0.062500 sys 0.0312
The results vary but the indexed version was consistently faster that the unindexed one.
With fast access to parts of the dictionary through an indexed table, you can bind the UITableView to the database using NSFecthedResultsController. This class takes care of fecthing records as required, caches results to improve performance and allows predicates to be easily specified.
An example of how to use the NSFetchedResultsController is included in the iPhone Developers Cookbook. See main.m
Just keep the strings in a file on the disk, and do the binary search directly in the file.
So: you say the file is 3.2mb. Suppose the format of the file is like this:
key DELIMITER value PAIRDELIMITER
where key is a string, and value is the value you want to associate. The DELIMITER and PAIRDELIMITER must be chosen as such that they don't occur in the value and key.
Furthermore, the file must be sorted on the key
With this file you can just do the binary search in the file itself.
Suppose one types a letter, you go to the half of the file, and search(forwards or backwards) to the first PAIRDELIMITER. Then check the key and see if you have to search upwards or downwards. And repeat untill you find the key you need,
I'm betting this will be fast enough.
Store your dictionary in Core Data and use NSFetchedResultsController to manage the display of these dictionary entries in your table view. Loading all 125,000 words into memory at once is a terrible idea, both performance- and memory-wise. Using the -setFetchBatchSize: method on your fetch request for loading the words for your table, you can limit NSFetchedResultsController to only handling the small subset of words that are visible at any given moment, plus a little buffer. As the user scrolls up and down the list of words, new batches of words are fetched in transparently.
A case like yours is exactly why this class (and Core Data) was added to iPhone OS 3.0.
Do you need to store/load all data at once?
Maybe you can just load the chunk of strings you need to display and load all other strings in the background.
Perhaps you can load data into memory in one thread and search from it in another? You may not get search results instantly, but having some searches feel snappier may be better than none at all, by waiting until all data are loaded.
Are some words searched more frequently or repeatedly than others? Perhaps you can cache frequently searched terms in a separate database or other store. Load it in a separate thread as a searchable store, while you are loading the main store.
As for a data structure solution, you might look into a suffix trie to search for substrings in linear time. This will probably increase your storage requirements, though, which may affect your ability to implement this with an iPhone's limited memory and disk storage capabilities.
I really don't think you're on the right path trying to load everything at once.
You've already determined that your bottleneck is the deserialization.
Regardless what the UI does, the user only sees a handful (literally) of search results at a time.
SQLlite already has a robust indexing mechanism, there is likely no need to re-invent that wheel with your own indexing, etc.
IMHO, you need to rethink how you are using UITableView. It only needs a few screenfuls of data at a time, and you should reuse cell objects as they scroll out of view rather than creating a ton of them to begin with.
So, use SQLlite's indexing and grab "TOP x" rows, where x is the right balance between giving the user some immediately-available rows to scroll through without spending too much time loading them. Set the table's scroll bar scaling using a separate SELECT COUNT(*) query, which only needs to be updated when the user types something different.
You can always go back and cache aggressively after you deserialize enough to get something up on-screen. A slight lag after the first flick or typing a letter is more acceptable than a 7-second delay just starting the app.
I have currently a somewhat similar coding problem with a large amount of searchable strings.
My solution is to store the prepared data in one large memory array, containing both the texttual data and offsets as links. Meaning I do not allocate objects for each item. This makes the data use less memory and also allows me to load & save it to a file without further processing.
Not sure if this is an option for you, since this is quite an obvious solution once you've realized that the object tree is causing the slowdown.
I use a large NSData memory block, then search through it. Well, there's more to it, it took me about two days to get it well optimized.
In your case I suspect you have a dictionary with a lot of words that have similar beginnings. You could prepare them on another computer in a format the both compacts the data and also facilitates fast lookup. As a first step, the words should be sorted. With that, you can already perform a binary search on them for a fast lookup. If you store it all in one large memory area, you can do the search quite fast, compared to how sqlite would search, I think.
Another way would be to see the words as a kind of tree: You have many thousands that begin with the same letter. So you divide your data accordingly: You have a sql table for each beginning letter of your set of words. that way, if you look up a word, you'd select one of the now-smaller tables depening on the first letter. This makes the amount that has to be searched already much smaller. and you can do this for the 2nd and 3rd letter as well, and you already could have quite a fast access.
Did this give you some ideas?
Well actually I figured it out myself in the end, but of course I thank you all for your quick and pertinent answers. To be concise I will just say that, the fact that Objective-C, just like any other object-based programming language, due to introspection and other objective requirements is significantly slower than procedural programming languages.
The solution was in fact to load all my data in a continuous chunk of memory using malloc (a char **) and search on-demand in it and transform to objects. This concluded in a .5 sec loading time (from file to memory) and resonable (should be read "fast") operations during execution. Thank you all again and if you have any questions I'm here for you. Thanks