I am trying to import some csv file to Solr using Spark as "pipe", in this way:
trait SparkConnector {
def connectionWrapper[A](f: SparkContext => A): A = {
val sc: SparkContext = getSparkContext()
val res: A = f(sc)
sc.stop
res
}
}
object SolrIndexBuilder extends SparkConnector {
val solr = new ConcurrentUpdateSolrClient ("http://some-solr-url", 10000, 5)
def run(implicit fileSystem: FileSystem) = connectionWrapper[Unit] {
sparkContext =>
def build(): Unit = {
def toSolrDocument(person: Map[String, String], fieldNames: Array[String]): SolrInputDocument = {
val doc = new SolrInputDocument()
//add the values to the solr doc
doc
}
def rddToMapWithHeaderUnchecked(rdd: RDD[String], header: Array[String]): RDD[Map[String, String]] =
rdd.map { line =>
val splits = new CSVParser().parseLine(line)
header.zip(splits).toMap
}
val indexCsv = sparkContext.textFile("/somewhere/filename.csv")
val fieldNames = Vector("field1", "field2", "field3", ...)
val indexRows = rddToMapWithHeaderUnchecked(indexCsv, fieldNames)
indexRows.map(row => toSolrDocument(row, fieldNames)).foreach { doc => solr.add(doc) }
if (!indexRows.isEmpty()) {
solr.blockUntilFinished()
solr.commit()
}
}
build()
}
}
Running the code on a cluster (Spark-mode) I get the following error:
Caused by: java.io.NotSerializableException: org.apache.http.impl.client.SystemDefaultHttpClient
Serialization stack:
- object not serializable (class: org.apache.http.impl.client.SystemDefaultHttpClient, value: org.apache.http.impl.client.SystemDefaultHttpClient#3bdd79c7)
- field (class: org.apache.solr.client.solrj.impl.HttpSolrClient, name: httpClient, type: interface org.apache.http.client.HttpClient)
- object (class org.apache.solr.client.solrj.impl.HttpSolrClient, org.apache.solr.client.solrj.impl.HttpSolrClient#5d2c576a)
- field (class: org.apache.solr.client.solrj.impl.ConcurrentUpdateSolrClient, name: client, type: class org.apache.solr.client.solrj.impl.HttpSolrClient)
- object (class org.apache.solr.client.solrj.impl.ConcurrentUpdateSolrClient, org.apache.solr.client.solrj.impl.ConcurrentUpdateSolrClient#5da7593d)
- field (class: com.oneninetwo.andromeda.solr.SolrIndexBuilder$$anonfun$run$1$$anonfun$build$1$2, name: solr$1, type: class org.apache.solr.client.solrj.impl.ConcurrentUpdateSolrClient)
- object (class com.oneninetwo.andromeda.solr.SolrIndexBuilder$$anonfun$run$1$$anonfun$build$1$2, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
... 26 more
which clearly states that I cannot serialize classes related to Solrj (and relative dependencies).
I tried different thing but I am cannot find a way to make it work. Any help?
UPDATE
This is one solution I have found:
indexRows.map(row => toSolrDocument(row, fieldNames)).foreachPartition{ partition =>
val solr = new ConcurrentUpdateSolrClient(...)
partition.foreach { doc =>
solr.add(doc)
}
solr.commit()
Related
I have input in json format with two fields, (size : BigInteger and data : String). Here data contains ZStd compressed Avro records. The task is to decode these records. I am using Spark-avro for this. But getting, Task not serializable exception.
Sample Data
{
"data": "7z776qOPevPJF5/0Dv9Rzx/1/i8gJJiQD5MTDGdbeNKKT"
"size" : 231
}
Code
import java.util.Base64
import com.github.luben.zstd.Zstd
import org.apache.avro.Schema
import com.twitter.bijection.Injection
import org.apache.avro.generic.GenericRecord
import com.twitter.bijection.avro.GenericAvroCodecs
import com.databricks.spark.avro.SchemaConverters
import org.apache.spark.sql.types.StructType
import com.databricks.spark.avro.SchemaConverters._
def decode2(input:String,size:Int,avroBijection:Injection[GenericRecord, Array[Byte]], sqlType:StructType): GenericRecord = {
val compressedGenericRecordBytes = Base64.getDecoder.decode(input)
val genericRecordBytes = Zstd.decompress(compressedGenericRecordBytes,size)
avroBijection.invert(genericRecordBytes).get
}
val myRdd = spark.read.format("json").load("/path").rdd
val rows = myRdd.mapPartitions{
lazy val schema = new Schema.Parser().parse(schemaStr)
lazy val avroBijection: Injection[GenericRecord, Array[Byte]] = GenericAvroCodecs.toBinary(schema)
lazy val sqlType = SchemaConverters.toSqlType(schema).dataType.asInstanceOf[StructType]
(iterator) => {
val myList = iterator.toList
myList.map{ x => {
val size = x(1).asInstanceOf[Long].intValue
val data = x(0).asInstanceOf [String]
decode2(data, size, avroBijection,sqlType)
}
}.iterator
}
}
Exception
files: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[987] at rdd at <console>:346
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2287)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:794)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:793)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.mapPartitions(RDD.scala:793)
... 112 elided
Caused by: java.io.NotSerializableException: org.apache.avro.generic.GenericDatumReader
Serialization stack:
- object not serializable (class: org.apache.avro.generic.GenericDatumReader, value: org.apache.avro.generic.GenericDatumReader#4937cd88)
- field (class: com.twitter.bijection.avro.BinaryAvroCodec, name: reader, type: interface org.apache.avro.io.DatumReader)
- object (class com.twitter.bijection.avro.BinaryAvroCodec, com.twitter.bijection.avro.BinaryAvroCodec#6945439c)
- field (class: $$$$79b2515edf74bd80cfc9d8ac1ba563c6$$$$iw, name: avroBijection, type: interface com.twitter.bijection.Injection)
Already tried SO posts
Spark: java.io.NotSerializableException: org.apache.avro.Schema$RecordSchema
Following this post I have update the decode2 method to take schemaStr as input and convert to schema and SqlType within method. No change in exception
Use schema to convert AVRO messages with Spark to DataFrame
Used the code provided in the post to create object Injection and then use it. This one also didn't help.
have you tried
val rows = myRdd.mapPartitions{
(iterator) => {
val myList = iterator.toList
myList.map{ x => {
lazy val schema = new Schema.Parser().parse(schemaStr)
lazy val avroBijection: Injection[GenericRecord, Array[Byte]] = GenericAvroCodecs.toBinary(schema)
lazy val sqlType = SchemaConverters.toSqlType(schema).dataType.asInstanceOf[StructType]
val size = x(1).asInstanceOf[Long].intValue
val data = x(0).asInstanceOf [String]
decode2(data, size, avroBijection,sqlType)
}
}.iterator
}
I am receiving a task not serializable exception in spark when attempting to implement an Apache pulsar Sink in spark structured streaming.
I have already attempted to extrapolate the PulsarConfig to a separate class and call this within the .foreachPartition lambda function which I normally do for JDBC connections and other systems I integrate into spark structured streaming like shown below:
PulsarSink Class
class PulsarSink(
sqlContext: SQLContext,
parameters: Map[String, String],
partitionColumns: Seq[String],
outputMode: OutputMode) extends Sink{
override def addBatch(batchId: Long, data: DataFrame): Unit = {
data.toJSON.foreachPartition( partition => {
val pulsarConfig = new PulsarConfig(parameters).client
val producer = pulsarConfig.newProducer(Schema.STRING)
.topic(parameters.get("topic").get)
.compressionType(CompressionType.LZ4)
.sendTimeout(0, TimeUnit.SECONDS)
.create
partition.foreach(rec => producer.send(rec))
producer.flush()
})
}
PulsarConfig Class
class PulsarConfig(parameters: Map[String, String]) {
def client(): PulsarClient = {
import scala.collection.JavaConverters._
if(!parameters.get("tlscert").isEmpty && !parameters.get("tlskey").isEmpty) {
val tlsAuthMap = Map("tlsCertFile" -> parameters.get("tlscert").get,
"tlsKeyFile" -> parameters.get("tlskey").get).asJava
val tlsAuth: Authentication = AuthenticationFactory.create(classOf[AuthenticationTls].getName, tlsAuthMap)
PulsarClient.builder
.serviceUrl(parameters.get("broker").get)
.tlsTrustCertsFilePath(parameters.get("tlscert").get)
.authentication(tlsAuth)
.enableTlsHostnameVerification(false)
.allowTlsInsecureConnection(true)
.build
}
else{
PulsarClient.builder
.serviceUrl(parameters.get("broker").get)
.enableTlsHostnameVerification(false)
.allowTlsInsecureConnection(true)
.build
}
}
}
The error message I receive is the following:
ERROR StreamExecution: Query [id = 12c715c2-2d62-4523-a37a-4555995ccb74, runId = d409c0db-7078-4654-b0ce-96e46dfb322c] terminated with error
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:340)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:330)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2294)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:925)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:924)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:924)
at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply$mcV$sp(Dataset.scala:2341)
at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2341)
at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2341)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2828)
at org.apache.spark.sql.Dataset.foreachPartition(Dataset.scala:2340)
at org.apache.spark.datamediation.impl.sink.PulsarSink.addBatch(PulsarSink.scala:20)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply$mcV$sp(StreamExecution.scala:666)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply(StreamExecution.scala:666)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply(StreamExecution.scala:666)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:279)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch(StreamExecution.scala:665)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(StreamExecution.scala:306)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$apply$mcZ$sp$1.apply(StreamExecution.scala:294)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$apply$mcZ$sp$1.apply(StreamExecution.scala:294)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:279)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:294)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:290)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:206)
Caused by: java.io.NotSerializableException: org.apache.spark.datamediation.impl.sink.PulsarSink
Serialization stack:
- object not serializable (class: org.apache.spark.datamediation.impl.sink.PulsarSink, value: org.apache.spark.datamediation.impl.sink.PulsarSink#38813f43)
- field (class: org.apache.spark.datamediation.impl.sink.PulsarSink$$anonfun$addBatch$1, name: $outer, type: class org.apache.spark.datamediation.impl.sink.PulsarSink)
- object (class org.apache.spark.datamediation.impl.sink.PulsarSink$$anonfun$addBatch$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:337)
... 31 more
Values used in "foreachPartition" can be reassigned from class level to function variables:
override def addBatch(batchId: Long, data: DataFrame): Unit = {
val parametersLocal = parameters
data.toJSON.foreachPartition( partition => {
val pulsarConfig = new PulsarConfig(parametersLocal).client
Ran into this error when trying to run a spark streaming application with checkpointing enabled.
java.io.NotSerializableException: DStream checkpointing has been enabled but the DStreams with their functions are not serializable
Serialization stack:
org.apache.spark.streaming.StreamingContext
Serialization stack:
- object not serializable (class: org.apache.spark.streaming.StreamingContext, value: org.apache.spark.streaming.StreamingContext#63cf0da6)
- object not serializable (class: org.apache.spark.streaming.StreamingContext, value: org.apache.spark.streaming.StreamingContext#63cf0da6)
- field (class: com.sales.spark.job.streaming.SalesStream, name: streamingContext, type: class org.apache.spark.streaming.StreamingContext)
- field (class: com.sales.spark.job.streaming.SalesStream, name: streamingContext, type: class org.apache.spark.streaming.StreamingContext)
- object (class com.sales.spark.job.streaming.SalesStreamFactory$$anon$1, com.sales.spark.job.streaming.SalesStreamFactory$$anon$1#1738d3b2)
- object (class com.sales.spark.job.streaming.SalesStreamFactory$$anon$1, com.sales.spark.job.streaming.SalesStreamFactory$$anon$1#1738d3b2)
- field (class: com.sales.spark.job.streaming.SalesStream$$anonfun$runJob$1, name: $outer, type: class com.sales.spark.job.streaming.SalesStream)
- field (class: com.sales.spark.job.streaming.SalesStream$$anonfun$runJob$1, name: $outer, type: class com.sales.spark.job.streaming.SalesStream)
- object (class com.sales.spark.job.streaming.SalesStream$$anonfun$runJob$1, <function1>)
- object (class com.sales.spark.job.streaming.SalesStream$$anonfun$runJob$1, <function1>)
Trying to execute the piece of code. I am thinking the issue has to do with trying to access the spark session variable inside the tempTableView function
Code
liveRecordStream
.foreachRDD(newRDD => {
if (!newRDD.isEmpty()) {
val cacheRDD = newRDD.cache()
val updTempTables = tempTableView(t2s, stgDFMap, cacheRDD)
val rdd = updatestgDFMap(stgDFMap, cacheRDD)
persistStgTable(stgDFMap)
dfMap
.filter(entry => updTempTables.contains(entry._2))
.map(spark.sql)
.foreach( df => writeToES(writer, df))
}
}
tempTableView
def tempTableView(t2s: Map[String, StructType], stgDFMap: Map[String, DataFrame], cacheRDD: RDD[cacheRDD]): Set[String] = {
stgDFMap.keys.filter { table =>
val tRDD = cacheRDD
.filter(r => r.Name == table)
.map(r => r.values)
val tDF = spark.createDataFrame(tRDD, tableNameToSchema(table))
if (!tRDD.isEmpty()) {
val tName = s"temp_$table"
tDF.createOrReplaceTempView(tName)
}
!tRDD.isEmpty()
}.toSet
}
Not sure how to get the spark session variable inside this function which is called inside foreachRDD.
I am instantiating the streamingContext as part of a different class.
class Test {
lazy val sparkSession: SparkSession =
SparkSession
.builder()
.appName("testApp")
.config("es.nodes", SalesConfig.elasticnode)
.config("es.port", SalesConfig.elasticport)
.config("spark.sql.parquet.filterPushdown", parquetFilterPushDown)
.config("spark.debug.maxToStringFields", 100000)
.config("spark.rdd.compress", rddCompress)
.config("spark.task.maxFailures", 25)
.config("spark.streaming.unpersist", streamingUnPersist)
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
lazy val streamingContext: StreamingContext = new StreamingContext(sparkSession.sparkContext,Seconds(15))
streamingContext.checkpoint("/Users/gswaminathan/Guidewire/Java/explore-policy/checkpoint/")
}
I tried extending this class as Serializable, but no luck.
I am trying to load CSV file to solr doc, i am trying using scala. I am new to scala. For case class structure, if i pass one set of values it works fine. But if i want to want all read values from CSV, it gives an error. I am not sure how to do it in scala, any help greatly appreciated.
object BasicParseCsv {
case class Person(id: String, name: String,age: String, addr: String )
val schema = ArrayBuffer[Person]()
def main(args: Array[String]) {
val master = args(0)
val inputFile = args(1)
val outputFile = args(2)
val sc = new SparkContext(master, "BasicParseCsv", System.getenv("SPARK_HOME"))
val params = new ModifiableSolrParams
val Solr = new HttpSolrServer("http://localhost:8983/solr/person1")
//Preparing the Solr document
val doc = new SolrInputDocument()
val input = sc.textFile(inputFile)
val result = input.map{ line =>
val reader = new CSVReader(new StringReader(line));
reader.readNext();
}
def getSolrDocument(person: Person): SolrInputDocument = {
val document = new SolrInputDocument()
document.addField("id",person.id)
document.addField("name", person.name)
document.addField("age",person.age)
document.addField("addr", person.addr)
document
}
def send(persons:List[Person]){
persons.foreach(person=>Solr.add(getSolrDocument(person)))
Solr.commit()
}
val people = result.map(x => Person(x(0), x(1),x(2),x(3)))
val book1 = new Person("101","xxx","20","abcd")
send(List(book1))
people.map(person => send(List(Person(person.id, person.name, person.age,person.addr))))
System.out.println("Documents added")
}
}
people.map(person => send(List(Person(person.id, person.name, person.age,person.addr)))) ==> gives error
val book1 = new Person("101","xxx","20","abcd") ==> works fine
Update : I get below error
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2067)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at BasicParseCsv$.main(BasicParseCsv.scala:90)
at BasicParseCsv.main(BasicParseCsv.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
Caused by: java.io.NotSerializableException: org.apache.http.impl.client.SystemDefaultHttpClient
Serialization stack:
- object not serializable (class: org.apache.http.impl.client.SystemDefaultHttpClient, value: org.apache.http.impl.client.SystemDefaultHttpClient#1dbd580)
- field (class: org.apache.solr.client.solrj.impl.HttpSolrServer, name: httpClient, type: interface org.apache.http.client.HttpClient)
- object (class org.apache.solr.client.solrj.impl.HttpSolrServer, org.apache.solr.client.solrj.impl.HttpSolrServer#17e0827)
- field (class: BasicParseCsv$$anonfun$main$1, name: Solr$1, type: class org.apache.solr.client.solrj.impl.HttpSolrServer)
The following class contains the main function which tries to read from Elasticsearch and prints the documents returned:
object TopicApp extends Serializable {
def run() {
val start = System.currentTimeMillis()
val sparkConf = new Configuration()
sparkConf.set("spark.executor.memory","1g")
sparkConf.set("spark.kryoserializer.buffer","256")
val es = new EsContext(sparkConf)
val esConf = new Configuration()
esConf.set("es.nodes","localhost")
esConf.set("es.port","9200")
esConf.set("es.resource", "temp_index/some_doc")
esConf.set("es.query", "?q=*:*")
esConf.set("es.fields", "_score,_id")
val documents = es.documents(esConf)
documents.foreach(println)
val end = System.currentTimeMillis()
println("Total time: " + (end-start) + " ms")
es.shutdown()
}
def main(args: Array[String]) {
run()
}
}
Following class converts the returned document to JSON using org.json4s
class EsContext(sparkConf:HadoopConfig) extends SparkBase {
private val sc = createSCLocal("ElasticContext", sparkConf)
def documentsAsJson(esConf:HadoopConfig):RDD[String] = {
implicit val formats = DefaultFormats
val source = sc.newAPIHadoopRDD(
esConf,
classOf[EsInputFormat[Text, MapWritable]],
classOf[Text],
classOf[MapWritable]
)
val docs = source.map(
hit => {
val doc = Map("ident" -> hit._1.toString) ++ mwToMap(hit._2)
write(doc)
}
)
docs
}
def shutdown() = sc.stop()
// mwToMap() converts MapWritable to Map
}
Following class creates the local SparkContext for the application:
trait SparkBase extends Serializable {
protected def createSCLocal(name:String, config:HadoopConfig):SparkContext = {
val iterator = config.iterator()
for (prop <- iterator) {
val k = prop.getKey
val v = prop.getValue
if (k.startsWith("spark."))
System.setProperty(k, v)
}
val runtime = Runtime.getRuntime
runtime.gc()
val conf = new SparkConf()
conf.setMaster("local[2]")
conf.setAppName(name)
conf.set("spark.serializer", classOf[KryoSerializer].getName)
conf.set("spark.ui.port", "0")
new SparkContext(conf)
}
}
When I run TopicApp I get the following errors:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at TopicApp.EsContext.documents(EsContext.scala:51)
at TopicApp.TopicApp$.run(TopicApp.scala:28)
at TopicApp.TopicApp$.main(TopicApp.scala:39)
at TopicApp.TopicApp.main(TopicApp.scala)
Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext
Serialization stack:
- object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext#14f70e7d)
- field (class: TopicApp.EsContext, name: sc, type: class org.apache.spark.SparkContext)
- object (class TopicApp.EsContext, TopicApp.EsContext#2cf77cdc)
- field (class: TopicApp.EsContext$$anonfun$documents$1, name: $outer, type: class TopicApp.EsContext)
- object (class TopicApp.EsContext$$anonfun$documents$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
... 13 more
Going through other posts that cover similar issue there were mostly recommending making the classes Serializable or try to separate the non-serializable objects from the classes.
From the error that I got I inferred that SparkContext i.e. sc is non-serializable as SparkContext is not a serializable class.
How should I decouple SparkContext, so that the applications runs correctly?
I can't run your program to be sure, but the general rule is not to create anonymous functions that refer to members of unserializable classes if they have to be executed on the RDD's data. In your case:
EsContext has a val of type SparkContext, which is (intentionally) not serializable
In the anonymous function passed to RDD.map in EsContext.documentsAsJson, you call another function of this EsContext instance (mwToMap) which forces Spark to serialize that instance, along with the SparkContext it holds
One possible solution would be removing mwToMap from the EsContext class (possibly into a companion object of EsContext - objects need not be serializable as they are static). If there are other methods of the same nature (write?) they'll have to be moved too. This would look something like:
import EsContext._
class EsContext(sparkConf:HadoopConfig) extends SparkBase {
private val sc = createSCLocal("ElasticContext", sparkConf)
def documentsAsJson(esConf: HadoopConfig): RDD[String] = { /* unchanged */ }
def documents(esConf: HadoopConfig): RDD[EsDocument] = { /* unchanged */ }
def shutdown() = sc.stop()
}
object EsContext {
private def mwToMap(mw: MapWritable): Map[String, String] = { ... }
}
If moving these methods out isn't possible (i.e. if they require some of EsContext's members) - then consider separating the class that does the actual mapping from this context (which seems to be some kind of wrapper around the SparkContext - if that's what it is, that's all that it should be).