Ode23 doesn't finish executing - matlab

I'm new to Matlab, and I'm trying to solve the differential equation y'=-y/n for a constant n. I define the function in a script like this:
function dv = lc(v1)
dv = -v1/(0.0000047*0.000001);
And then try and solve it like this:
[t,v] = ode23('lc',[0 5],1)
But the operation never finishes executing. It just eats up my RAM and says "Busy" in the corner, until I press ctrl+c to terminate it. What am I doing wrong here?

You're a victim of underflow. What happens is that there is not an infinite number of floating point numbers (see Is floating point math broken?), so the results are not fully precise. When the numbers are small enough there is the possibility of the number being treated as 0 by the computer. The process that matlab uses for ode23 is based on finite differencing, which involves division. Considering the underflow error, there either will be a division by 0 issue, or possible overflow with an incredibly small divisor trending the result toward infinity and not fulfilling the conditions for solution.

Related

How to make Matlab do lazy evaluation?

I am trying to do the following integral numerically.
b = 2;
f1 = #(x) (b<1).*x./(2-b);
R = integral(f1,0,1);
This code gives me R=NaN. I understand that Matlab probably evaluates x./(2-b) and finds there is a 0 at the bottom of the fraction, which immediately generates a NaN. Then, all of the subsequent operations are ruined by this NaN.
What I want is: Matlab does the operations from the left to the right, i.e., first check b<1. If b<1 is violated, then it stops to evaluate the next thing in the bracket (which avoids getting NaN).
I am not sure how to achieve this goal, or if Matlab is capable of doing that.
My actual computation is very complicated that involves tons of this type of logical comparisons. Any comments and suggestions are highly appreciated!

Matlab Symbolic expression creates overflow

I am using Matlab symbolic toolbox to create a function of high complexity. This function is then written to a .m-file (using matlabFunction). For some reason, after simplifying the function, the function is returned on a form that looks like fun = (A*1.329834759483753e310 + B*5.873798798237459e305 + ...)*7.577619127319697e-320, where A and B are functions of my variables (too complex to repeat here). That is, all the terms within the parenthesis are in the order of about 1e280 to 1e300. The problems arises when the exponents become larger than about 1.79e308, as this causes an overflow for doubles (when calling the generated .m-function). The real size of the function is nowhere close to create an overflow, but this way of expressing the function does. This would be solved if the simplify function multiplied the 1e-320 into the parenthesis, but for some reason it doesn't.
Any idea why the symbolic toolbox chooses to represent my function this way?
I have found that I can call call expand(fun) to multiply 1e-320 into the parenthesis. The resulting expression then has exponents with the expected sizes (in the range -1 to -30) but I would prefer to know the reason why the expression looks like this in the first place, and if there are better options than calling expand to avoid the problem. Besides, calling expand seems to create a more complex function than the one I have, and I am trying to obtain a function that evaluates very fast here.
Large exponent multipliers are probably due to some floats in the formula. Try to avoid them and use rationals (1/2 instead of 0.5).
The best reason I've read is this one:
The floating point numbers tend to get converted to rational numbers, which usually involves multiplying by 2^53 and then factoring out the gcd from the top and bottom of the ratio. Square such a value and you are working with numbers on the order of 2^100... and so on.

Symbolic Math Toolbox hitting divide by zero error when it used to evaluate to NaN

I've just updated to Matlab 2014a finally. I have loads of scripts that use the Symbolic Math Toolbox that used to work fine, but now hit the following error:
Error using mupadmex
Error in MuPAD command: Division by zero. [_power]
Evaluating: symobj::trysubs
I can't post my actual code here, but here is a simplified example:
syms f x y
f = x/y
results = double(subs(f, {'x','y'}, {1:10,-4:5}))
In my actual script I'm passing two 23x23 grids of values to a complicated function and I don't know in advance which of these values will result in the divide by zero. Everything I can find on Google just tells me not to attempt an evaluation that will result in the divide by zero. Not helpful! I used to get 'inf' (or 'NaN' - I can't specifically remember) for those it could not evaluate that I could easily filter for when I do the next steps on this data.
Does anyone know how to force Matlab 2014a back to that behaviour rather than throwing the error? Or am I doomed to running an older version of Matlab forever or going through the significant pain of changing my approach to this to avoid the divide by zero?
You could define a division which has the behaviour you want, this division function returns inf for division by zero:
mydiv=#(x,y)x/(dirac(y)+y)+dirac(y)
f = mydiv(x,y)
results = double(subs(f, {'x','y'}, {1:10,-4:5}))

Matlab: poor accuracy of optimizers/solvers

I am having difficulty achieving sufficient accuracy in a root-finding problem on Matlab. I have a function, Lik(k), and want to find the value of k where Lik(k)=L0. Basically, the problem is that various built-in Matlab solvers (fzero, fminbnd, fmincon) are not getting as close to the solution as I would like or expect.
Lik() is a user-defined function which involves extensive coding to compute a numerical inverse Laplace transform, etc., and I therefore do not include the full code. However, I have used this function extensively and it appears to work properly. Lik() actually takes several input parameters, but for the current step, all of these are fixed except k. So it is really a one-dimensional root-finding problem.
I want to find the value of k >= 165.95 for which Lik(k)-L0 = 0. Lik(165.95) is less than L0 and I expect Lik(k) to increase monotonically from here. In fact, I can evaluate Lik(k)-L0 in the range of interest and it appears to smoothly cross zero: e.g. Lik(165.95)-L0 = -0.7465, ..., Lik(170.5)-L0 = -0.1594, Lik(171)-L0 = -0.0344, Lik(171.5)-L0 = 0.1015, ... Lik(173)-L0 = 0.5730, ..., Lik(200)-L0 = 19.80. So it appears that the function is behaving nicely.
However, I have tried to "automatically" find the root with several different methods and the accuracy is not as good as I would expect...
Using fzero(#(k) Lik(k)-L0): If constrained to the interval (165.95,173), fzero returns k=170.96 with Lik(k)-L0=-0.045. Okay, although not great. And for practical purposes, I would not know such a precise upper bound without a lot of manual trial and error. If I use the interval (165.95,200), fzero returns k=167.19 where Lik(k)-L0 = -0.65, which is rather poor. I have been running these tests with Display set to iter so I can see what's going on, and it appears that fzero hits 167.19 on the 4th iteration and then stays there on the 5th iteration, meaning that the change in k from one iteration to the next is less than TolX (set to 0.001) and thus the procedure ends. The exit flag indicates that it successfully converged to a solution.
I also tried minimizing abs(Lik(k)-L0) using fminbnd (giving upper and lower bounds on k) and fmincon (giving a starting point for k) and ran into similar accuracy issues. In particular, with fmincon one can set both TolX and TolFun, but playing around with these (down to 10^-6, much higher precision than I need) did not make any difference. Confusingly, sometimes the optimizer even finds a k-value on an earlier iteration that is closer to making the objective function zero than the final k-value it returns.
So, it appears that the algorithm is iterating to a certain point, then failing to take any further step of sufficient size to find a better solution. Does anyone know why the algorithm does not take another, larger step? Is there anything I can adjust to change this? (I have looked at the list under optimset but did not come up with anything useful.)
Thanks a lot!
As you seem to have a 'wild' function that does appear to be monotone in the region, a fairly small range of interest, and not a very high requirement in precision I think all criteria are met for recommending the brute force approach.
Assuming it does not take too much time to evaluate the function in a point, please try this:
Find an upperbound xmax and a lower bound xmin, choose a preferred stepsize and evaluate your function at
xmin:stepsize:xmax
If required (and monotonicity really applies) you can get another upper and lower bound by doing this and repeat the process for better accuracy.
I also encountered this problem while using fmincon. Here is how I fixed it.
I needed to find the solution of a function (single variable) within an optimization loop (multiple variables). Because of this, I needed to provide a large interval for the solution of the single variable function. The problem is that fmincon (or fzero) does not converge to a solution if the search interval is too large. To get past this, I solve the problem inside a while loop, with a huge starting upperbound (1e200) with the constraint made on the fval value resulting from the solver. If the resulting fval is not small enough, I decrease the upperbound by a factor. The code looks something like this:
fval = 1;
factor = 1;
while fval>1e-7
UB = factor*1e200;
[x,fval,exitflag] = fminbnd(#(x)function(x,...),LB,UB,options);
factor = factor * 0.001;
end
The solver exits the while when a good solution is found. You can of course play also with the LB by introducing another factor and/or increase the factor step.
My 1st language isn't English so I apologize for any mistakes made.
Cheers,
Cristian
Why not use a simple bisection method? You always evaluate the middle of a certain interval and then reduce this to the right or left part so that you always have one bound giving a negative and the other bound giving a positive value. You can reduce to arbitrary precision very quickly. Since you reduce the interval in half each time it should converge very quickly.
I would suspect however there is some other problem with that function in that it has discontinuities. It seems strange that fzero would work so badly. It's a deterministic function right?

Turn off "smart behavior" in Matlab

There is one thing I do not like on Matlab: It tries sometimes to be too smart. For instance, if I have a negative square root like
a = -1; sqrt(a)
Matlab does not throw an error but switches silently to complex numbers. The same happens for negative logarithms. This can lead to hard to find errors in a more complicated algorithm.
A similar problem is that Matlab "solves" silently non quadratic linear systems like in the following example:
A=eye(3,2); b=ones(3,1); x = A \ b
Obviously x does not satisfy A*x==b (It solves a least square problem instead).
Is there any possibility to turn that "features" off, or at least let Matlab print a warning message in this cases? That would really helps a lot in many situations.
I don't think there is anything like "being smart" in your examples. The square root of a negative number is complex. Similarly, the left-division operator is defined in Matlab as calculating the pseudoinverse for non-square inputs.
If you have an application that should not return complex numbers (beware of floating point errors!), then you can use isreal to test for that. If you do not want the left division operator to calculate the pseudoinverse, test for whether A is square.
Alternatively, if for some reason you are really unable to do input validation, you can overload both sqrt and \ to only work on positive numbers, and to not calculate the pseudoinverse.
You need to understand all of the implications of what you're writing and make sure that you use the right functions if you're going to guarantee good code. For example:
For the first case, use realsqrt instead
For the second case, use inv(A) * b instead
Or alternatively, include the appropriate checks before/after you call the built-in functions. If you need to do this every time, then you can always write your own functions.