My agents are boats moving on water, surrounding and at some places within that water are bits of land which need to be impossible to pass. I'm struggling to conceptualize how to tell an agent this information in netlogo.
I've assigned
patches-own
[DEPTH
PASSABLE?
]
with
ask patches with [DEPTH > 0] [set PASSABLE? FALSE]
How do I tell a turtle to not cross over or occupy a patch with PASSABLE? = FALSE while engaging in an otherwise random walk search for
patches in-radius VISION with [DEPTH = 10]
?
sorry for the lack of a reproducible example, but this is a more conceptual question than anything. I will rough out a simple example model if need be.
When your agent is about to take a step forward, you can have them check if they can, then make them pick a new destination if they are going onto dry land
You can do this with Patch-Ahead or In-Cone if you want. Use that to set the destination.
Somthing like:
to walk
"pick destination"
ifelse destination = water [fd 1] [walk]
end
To pick what the possible destination is, you use what the turtle's current heading is like this:
to pick-destination
let destination patch-ahead 1
end
Related
I am trying to get my turtles to look around themselves in netlogo and select a patch with the lowest slope variable in radius 2 - and if there isn't one to just select any patch.
I check my code, and it says everything is fine, but when I run it I keep getting this error: this code can't be run by a patch - error while patch X X running ifelse - called by procedure move - called by procedure go - called by button "go"
This is my move code:
to move
ask turtles [ask patches in-radius 2
[ifelse slope < 5
[fd 1]
[move-to one-of patches in-radius 2]
]
]
end
I have already tried downhill and downhill4 but my agents seemed to get stuck at the bottom of the slope and couldn't move anywhere.
Thank you for any help and advice!
Thank you - my code now works!
Because you are asking turtles to ask patches, the code inside the ask patches is run by the patch! A patch can’t use turtle variables, and doesn’t know that you mean to refer to the variables of the turtle that asked the patch.
This is what “of myself” is for. It lets an agent (self) talk to the agent that is telling it what to do. You’ll see stuff like “set heading [heading] of myself” But that’s not what you need here.
we could use an ask patches like you are doing here, but we really don’t want them to do anything, and it’s going to make the code much more complex looking. Anyway, We just want to find a patch that meets the turtle’s needs and move to it.
So instead. We can query the nearby patches using a WITH and store the set of patches found in a “patch set” variable.
If there are any, we can move to one of them.
Else, we can just move forward.
So
To move
Ask turtles
[
;; here the turtle tells patches to test the patch’s own slope
Let good-spots patches in-radius 2 with [ slope < 5 ]
;; are there some patches that pass the test?
If-else any? Good-spots
[ ;; Yes, pick one and go there
move-to one-of good-spots
]
[ ;; No, just move forward
Fd 1
]
]
End
Edit to add : Matteo’s answer correctly identifies the actual requirement, based on the question: move directly to the flattest patch, versus what the code above does, move to one of the flatter patches, if there is one.
Move-to min-one-of patches in-radius 2 [ slope ]
As you noted, This is similar but not identical to
Downhill slope
And neither of these may prevent turtles from getting stuck in a pit. You may need more code to detect pits and jump out of them.
The problem is not about variables but about commands: you are asking patches to run forward or to run move-to, while these are turtles' commands.
Now, for the purpose of the question, there is another issue: you said that you want
turtles to look around themselves in netlogo and select a patch with the lowest slope variable in radius 2 - and if there isn't one to just select any patch
However, even if we ignore the problem about asking patches to run forward or move-to, the structure of your code implies something very different. Your code seems to intend:
Turtles, check if there are any nearby patches with slope lower than a specific threshold;
If there are, move forward in whatever direction you are already facing;
If there are not, move to a random nearby patch.
The solution below is based on the assumption that what you want is what you said, and not what your code seems to imply.
The solution is very simple and only needs min-one-of (check it here):
to move
ask turtles [
move-to min-one-of patches in-radius 2 [slope]
]
end
As a demonstration, consider this full example:
patches-own [
slope
]
to setup
clear-all
ask patches [
set slope random 10 + 5
set pcolor scale-color green slope 5 14
]
create-turtles 10 [
setxy random-xcor random-ycor
set color yellow
]
end
to go
ask turtles [
move-to min-one-of patches in-radius 2 [slope]
]
end
You will see that turtles tend to go to darker patches, that are those with lower slope.
I'm trying to model predators hunting prey through a world filled with obstacles. In an obstacle free world, the predators go on random walks until prey fall within a certain detection radius (react-D), and then move towards the prey to capture. I guess there may be several ways to handle obstacles that block line of sight, but my initial efforts are along the following lines:
ifelse any? prey in-radius react-D
[let target min-one-of prey in-radius react-D [distance myself]
face target
...move towards target if it's closer than the nearest obstacle (blue patch) ahead
]
[continue to random walk, avoiding obstacles
]
The first condition of ifelse may need another ifelse. In any case I think I just need a distance of the nearest blue patch ahead to compare with the target distance, but it's not clear to me how I can get that from patch-ahead.
It would be nicer if I could put all this into the test of the first ifelse, but something like the following doesn't allow for patches that aren't blocking line of sight to the prey:
ifelse any? prey in-radius react-D and min-one-of (patches in-radius react-D with [pcolor = blue])[distance myself] > min-one-of (prey in-radius react-D) [distance myself]
Line of sight is actually really tricky to model in NetLogo. At the moment I do it by creating a turtle (invisible, separate breed called crawler) where the agent is that is looking and have the crawler move ahead in small steps checking the colour of the patch that it is on. That goes inside a while loop and the crawler stops when it finds the wrong colour or when it gets to the target distance. the crawler has to take small steps because crossing over the corner of a patch should still block it and it's a trade-off between resolution (how small the crawler step is) against efficiency.
You can almost certainly do the same thing by creating a patch-set as the union of patches found with patch-ahead of multiple distances like 0.1, 0.2, .... and then checking any? over that patch-set
My current solution, giving patches-own [ ob ] values of 1 to all obstacle patches, then using while to detect obstacles ahead:
to detect-ahead
let dist 1
let last-patch patch-here
while [dist <= react-D] [
let p patch-ahead dist
if p != last-patch and [ob] of p = 1 [
ask p [ sprout-markers 1 [ set color yellow ] ]
set last-patch p
]
set dist dist + 1
]
end
Then it should simply be a case of comparing min-one-of the marker agent set with the target. Obviously smaller increments would be good, as JenB says.
I'm trying to add a condition that doesn't allow an agent to cross over a road. The road patches are set to color red. I can't seem to figure out how to get this condition to work. I ultimately want the agent to turn around if the road is in the patch ahead. Here is my net logo code so far.
to go
ask turtles [
move
]
tick
if ticks >= 60 [stop]
end
to move
ifelse random-float 1 < q
[
ifelse random-float 1 < w
[let target-patch max-one-of neighbors [veg-suitability]
face target-patch]
[let target-patch max-one-of neighbors [pelev]
face target-patch]
]
[
ifelse [pcolor] of patch-ahead 1 = red
[lt random-float 180]
move-to one-of neighbors
ldd-normal
]
end
to ldd-normal
let ldd-distance (ldd-scale)
fd ldd-distance
end
The logic of your move procedure is a bit confused I think. First you have a random chance to either move to a patch with a higher value of a variable of interest (with the uphill primitive) or, if the random draw fails, it moves to a random neighbour. If you don't want it to move onto a red patch then you need to test if the patch that is chosen is red, but you just move it without checking.
After you have moved the turtle, you then check the colour of patch-ahead. Your problem here is that patch-ahead depends on the direction the turtle is facing, which has nothing to do with the direction it has already been moving. You either make it turn (though it may not turn enough) OR move forward. So it never actually moves away.
I can't give you an actual answer because I don't know what your logic is supposed to be. But you could look at structures like:
move-to one-of neighbors with [pcolor != red]
Or, if there are enough red patches that it is possible that there aren't any non-red neighbours (which would cause an error if you tried to move to one), you could use:
let okay-patches neighbors with [pcolor != red]
if any? okay-patches [move-to one-of okay-patches]
Another option is that you only meant to face rather than move to the patch in the first sections of code, then test whether it is facing a red patch and turn around if it is.
I want to know the Relationship between turtle size and patch size in Netlogo. Also I want to make those sizes in a way such that any turtle moves from one patch to another at every tick.
Patch size is measured in pixels. It is configurable in the "Model Settings" dialog.
You can think of turtle size as measured in "patches". A turtle of size 1 should appear to be the size of one patch. (Note, however, that turtle size is a "display only" property. Conceptually, turtles are just points. They don't really occupy space in the NetLogo world even if they appear to do so.)
Changing the xcor or the ycor of a turtle by 1 should move it by exactly one patch. If you want them to move diagonally, things are a bit more messy. You might be better off targeting destination patches directly, e.g.:
; move to the patch north-east of current position:
ask one-of turtles [ move-to patch-at 1 1 ]
; move to an adjacent patch at random:
ask one-of turtles [ move-to one-of neighbors ]
Those are just examples, of course. The code to use will depend on what exactly you are trying to do. If you tell us more in a separate question, we might be able to help you.
I am doing a small university project. In which i have to maintain 2 states of turtles.
1. Disperse
2. Explore
Disperse :
In dispersion, when at the start all the turtles (20 turtles) are at 0,0 they should disperse from each other. Every turtle has a radius of 2 patches around it, no other turtle should be in that radius. All turtles should go far until they all attain this radius. then other behavior will be called i.e. Explore.
Explore:
In explore , they have to explore the world and avoid different types of obstacles. When ever two turtles come close to each other above mentioned radius then state should be changed to disperse.
I have procedures for obstacle avoidance, and move-speed, and all other individual behaviors under Disperse and Explore. But i don't know how to join all this in one simulation.
It is unclear that you really need to maintain turtle state, since you will have to repeatedly check for other turtles in any case. But since you said you wanted that, you can use turtles-own. For example:
turtles-own [state]
to setup
ca
crt 20
end
to go
ask turtles [set-state]
ask turtles [move]
end
to set-state ;;turtle proc
ifelse (any? other turtles in-radius 2) [
set state "disperse"
] [
set state "explore"
]
end
to move ;;turtle proc
if (not member? state ["disperse" "explore"]) [
error "unknown state"
]
if (state = "disperse") [
disperse
]
if (state = "explore") [
explore
]
end
to disperse ;;turtle proc
move-to one-of patch-set [neighbors] of neighbors
end
to explore
move-to one-of neighbors
end
You might want to take a look at Moore machine and Automata, NetLogo works great with those.
A Moore machine can be seen as a set of 5 elements that interact with each other, in this particular example the start state(S0) would be Dispersing. In NetLogo you can use the word run that receives a string. You'd had to make a procedure that returns a string (say "explore") by checking the actual state of a turtle.
I made something like that a few months ago. We were trying to make a hunter-prey model for polar bears and seals (or wolves and sheeps) based on Moore Machines.
You can use the example of #Alan of course, I just skimmed through and I believe it was fine.
Here is my example based on Moore Machine. It's in spanish but the idea is the same.