This is what my documents look like
{
"_id" : ObjectId("584149cafda90a8b18cdfcc1"),
"uid" : "583eaa7df4def0ec5a520d19",
"surid" : "58414631ec5ed099538929b8",
"createdat" : ISODate("2016-12-02T10:15:38.382Z"),
"response" : [
{
"qid" : "649975800",
"que" : "Which is your favourite color ?",
"ans" : [
"red",
"yellow"
]
},
{
"qid" : "309541969",
"que" : "which is your favourite fruits ? ",
"ans" : [
"apple",
"orange"
]
}
]
}
/* 2 */
{
"_id" : ObjectId("58414a28fda90a8b18cdfcc7"),
"uid" : "57ff2141b893ba1a2e89ef57",
"surid" : "58414631ec5ed099538929b8",
"createdat" : ISODate("2016-12-02T10:17:12.800Z"),
"response" : [
{
"qid" : "649975800",
"que" : "Which is your favourite color ?",
"ans" : "red"
},
{
"qid" : "309541969",
"que" : "which is your favourite fruits ? ",
"ans" : "banana"
}
]
}
/* 3 */
{
"_id" : ObjectId("58414a52fda90a8b18cdfcd1"),
"uid" : "57b300678c9f14d7555b668e",
"surid" : "58414631ec5ed099538929b8",
"createdat" : ISODate("2016-12-02T10:17:54.869Z"),
"response" : [
{
"qid" : "649975800",
"que" : "Which is your favourite color ?",
"ans" : "red"
},
{
"qid" : "309541969",
"que" : "which is your favourite fruits ? ",
"ans" : "banana"
}
]
}
This is what I need:
{
"que" : "Which is your favourite color ?",
"ans" :{red:3, yellow:1}
},
{
"que" : "which is your favourite fruits ? ",
"ans":{apple:1, orange:1, banana:3}
}
I want to this result with mongodb aggregation using unique surid and with separate answer.
it's all about to the feedback result of the user data.
Because you won't know the values for the embedded ans array in advance, the proposed desired output won't be feasible since it assumes you know the values. A much better and faster approach would be to get the output as an embedded counts document like:
{
"ques": "Which is your favourite color ?",
"counts": [
{ "value": "red", "count": 3 },
{ "value": "yellow", "count": 1 }
]
},
{
"ques": "which is your favourite fruits ?",
"counts": [
{ "value": "apple", "count": 1 },
{ "value": "orange", "count": 1 },
{ "value": "banana", "count": 3 }
]
}
which can be achieved by running this aggregate operation:
db.collection.aggregate([
{ "$unwind": "$response" },
{ "$unwind": "$response.ans" },
{
"$group": {
"_id": {
"surid": "$surid",
"ans": "$response.ans"
},
"ques": { "$first": "$reponse.que" },
"count": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.surid",
"ques": { "$first": "$ques" },
"counts": {
"$push": {
"value": "$_id.ans",
"count": "$count"
}
}
}
}
])
However, if the values are static and known in advance, then take advantage of the $cond operator in the $group stage to evaluate the counts based on the "response.ans" field, something like the following:
db.collection.aggregate([
{ "$unwind": "$response" },
{ "$unwind": "$response.ans" },
{
"$group": {
"_id": "$surid",
"ques": { "$first": "$reponse.que" },
"red": {
"$sum": {
"$cond": [ { "$eq": [ "$response.ans", "red" ] }, 1, 0 ]
}
},
"yellow": {
"$sum": {
"$cond": [ { "$eq": [ "$response.ans", "yellow" ] }, 1, 0 ]
}
},
"apple": {
"$sum": {
"$cond": [ { "$eq": [ "$response.ans", "apple" ] }, 1, 0 ]
}
},
"orange": {
"$sum": {
"$cond": [ { "$eq": [ "$response.ans", "orange" ] }, 1, 0 ]
}
},
"banana": {
"$sum": {
"$cond": [ { "$eq": [ "$response.ans", "banana" ] }, 1, 0 ]
}
}
}
}
])
Related
I have a collection :
{
"value" : "20",
"type" : "square",
"name" : "form1"
},
{
"value" : "24",
"type" : "circle",
"name" : "form2"
},
{
"value" : "12",
"type" : "square",
"name" : "form3"
}
This aggregation :
let searchTerm = "form2"
db.myCollec.aggregate([
{ "$facet": {
"data": [
{ "$match": { "name": searchTerm }},
{ "$project": { "name": 1, "type": 1, "_id": 0 }}
]
}},
{ "$project": {
"name": {
"$ifNull": [{ "$arrayElemAt": ["$data.name", 0] }, searchTerm ]
},
"type": {
"$ifNull": [{ "$arrayElemAt": ["$data.type", 0] }, null]
}
}}
])
give this result :
{ "name" : "form2", "type" : "circle" }
and if i'm looking for a non existing "form4" :
{ "name" : "form4", "type" : null }
Now I want to do it for a lot of values so I try to put them in an array then loop on this array. According to the asynchronous property of javascript I try this code :
tab = [ "form2", "form4" ]
for( var i =0; i<(tab.length);i++) { (function (i) {
searchTerm = tab[i]
db.myCollec.aggregate([
{ "$facet": {
"data": [
{ "$match": { "name": searchTerm }},
{ "$project": { "name": 1, "type": 1, "_id": 0 }}
]
}},
{ "$project": {
"name": {
"$ifNull": [{ "$arrayElemAt": ["$data.name", 0] }, searchTerm ]
},
"type": {
"$ifNull": [{ "$arrayElemAt": ["$data.type", 0] }, null]
}
}}
])
}) (i) }
There is no result...
If I add a print(searchTerm) the values are well printed but no result for the aggregation.
Thanx for your help.
I have a 3 Collections Assignments, Status, Assignee.
Assignments Fields : [_id, status, Assignee]
Assignee and Status Fields : [_id, name].
There can be many assignments associated with various Status and Assignee collections(linked via _id field), There is no nesting or complex data.
I need a query for all assignments ids where Assignees are the row, Status are the Columns, there combined cell is the count with Total counts at the end.
To help you visualize, I am attaching below image. I am new to complex Mongo DB Aggregate framework, kindly guide me to achieve query.
Note: Data in Status and Assignee collection will be dynamic. Nothing is predetermined in the Query. So, the Rows and Columns are going to grow dynamically in future, If the query is given pagination, then it would be of great help. I cannot write a query with hard coded status names like 'pending', 'completed' etc. As data shall grow and existing data may change like 'pending task', 'completed work'.
Below is my query
db.getCollection('Assignments').aggregate([
{
"$group": {
"_id": {
"assignee": "$assignee",
"statusId": "$statusId"
},
"statusCount": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.assignee",
"statuses": {
"$push": {
"statusId": "$_id.statusId",
"count": "$statusCount"
},
},
"count": { "$sum": "$statusCount" }
}
},
]);
Below is the output format:
{
"_id" : "John",
"statuses" : {
"statusId" : "Pending",
"count" : 3.0
},
"count" : 3.0
}
{
"_id" : "Katrina",
"statuses" : [{
"statusId" : "Pending",
"count" : 1.0
},
{
"statusId" : "Completed",
"count" : 1.0
},
{
"statusId" : "Assigned",
"count" : 1.0
}],
"count" : 3.0
}
{
"_id" : "Collins",
"statuses" : {
"statusId" : "Pending",
"count" : 4.0
},
"count" : 4.0
}
Expected Output is:
{
"_id" : "Katrina",
"Pending" : 1.0,
"Completed" : 1.0,
"Assigned" : 1.0,
"totalCount" : 3.0
}
Any Idea on how to many various statusId for different assignee as keys and not values in single document.
You need another $group stage after $unwind to count number of status based on statusId string value:
{
"$group": {
"_id": "$_id",
"Pending" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Pending"
]},
"$statuses.count",
0
]
}
},
"Completed" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Completed"
]},
"$statuses.count",
0
]
}
},
"Assigned" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Assigned"
]},
"$statuses.count",
0
]
}
},
"totalCount": { "$sum": 1 }
}
}
The final aggregate command:
db.getCollection('Assignments').aggregate([
{
"$group": {
"_id": {
"assignee": "$assignee",
"statusId": "$statusId"
},
"statusCount": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.assignee",
"statuses": {
"$push": {
"statusId": "$_id.statusId",
"count": "$statusCount"
},
},
"count": { "$sum": "$statusCount" }
}
},
{ "$unwind": "$statuses" },
{
"$group": {
"_id": "$_id",
"Pending" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Pending"
]},
"$statuses.count",
0
]
}
},
"Completed" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Completed"
]},
"$statuses.count",
0
]
}
},
"Assigned" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Assigned"
]},
"$statuses.count",
0
]
}
},
"totalCount": { "$sum": 1 }
}
}
]);
Why not just keep statuses as an object so each status is a key/val pair. If that works you do the following
db.getCollection('Assignments').aggregate([
[
{
"$group": {
"_id": {
"assignee": "$assignee",
"statusId": "$statusId"
},
"statusCount": { "$sum": 1 }
},
},
{
"$group" : {
"_id" : "$_id.assignee",
"statuses" : {
"$push" : {
"k" : "$_id.statusId", // <- "k" as key value important for $arrayToObject Function
"v" : "$statusCount" // <- "v" as key value important for $arrayToObject Function
}
},
"count" : {
"$sum" : "$statusCount"
}
}
},
{
"$project" : {
"_id" : 1.0,
"statuses" : {
"$arrayToObject" : "$statuses"
},
"totalCount" : "$count"
}
}
],
{
"allowDiskUse" : false
}
);
This gives you:
{
"_id" : "Katrina",
"statuses": {
"Pending" : 1.0,
"Completed" : 1.0,
"Assigned" : 1.0,
},
"totalCount" : 3.0
}
A compromise having it one layer deeper but still the shape of statuses you wanted and dynamic with each new statusId added.
I am using mongodb aggregation for getting counts of different fields. Here are some documents from the mobile collection:-
{
"title": "Moto G",
"manufacturer": "Motorola",
"releasing": ISODate("2011-03-00T10:26:48.424Z"),
"rating": "high"
}
{
"title": "Asus Zenfone 2",
"manufacturer": "Asus",
"releasing": ISODate("2014-10-00T10:26:48.424Z"),
"rating": "high"
}
{
"title": "Moto Z",
"manufacturer": "Motorola",
"releasing": ISODate("2016-10-12T10:26:48.424Z"),
"rating": "none"
}
{
"title": "Asus Zenfone 3",
"manufacturer": "Asus",
"releasing": ISODate("2016-08-00T10:26:48.424Z"),
"rating": "medium"
}
I can find manufacturer and rating counts but this fails:
db.mobile.aggregate([
{
$group: { _id: "$manufacturer", count: { $sum: 1 } }
}, {
$group: { _id: "$rating", count: { $sum: 1 } }
}
])
Output:-
{
"_id" : null,
"count" : 2.0
}
Expected Output something like:-
{
"_id":"Motorola",
"count" : 2.0
}
{
"_id":"Asus",
"count" : 2.0
}
{
"_id":"high",
"count" : 2.0
}
{
"_id":"none",
"count" : 1.0
}
{
"_id":"medium",
"count" : 1.0
}
I believe you are after an aggregation operation that groups the documents by the manufacturer and rating keys, then do a further group on the manufacturer while aggregating the ratings per manufacturer, something like the following pipeline:
db.mobile.aggregate([
{
"$group": {
"_id": {
"manufacturer": "$manufacturer",
"rating": "$rating"
},
"count": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.manufacturer",
"total": { "$sum": 1 },
"counts": {
"$push": {
"rating": "$_id.rating",
"count": "$count"
}
}
}
}
])
Sample Output
/* 1 */
{
"_id" : "Motorola",
"total" : 2,
"counts" : [
{
"rating" : "high",
"count" : 1
},
{
"rating" : "none",
"count" : 1
}
]
}
/* 2 */
{
"_id" : "Asus",
"total" : 2,
"counts" : [
{
"rating" : "high",
"count" : 1
},
{
"rating" : "medium",
"count" : 1
}
]
}
or if you are after a more "flat" or "denormalised" result, run this aggregate operation:
db.mobile.aggregate([
{
"$group": {
"_id": "$manufacturer",
"total": { "$sum": 1 },
"high_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "high" ] }, 1, 0 ]
}
},
"medium_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "medium" ] }, 1, 0 ]
}
},
"low_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "low" ] }, 1, 0 ]
}
},
"none_ratings": {
"$sum": {
"$cond": [ { "$eq": [ "$rating", "none" ] }, 1, 0 ]
}
}
}
}
])
Sample Output
/* 1 */
{
"_id" : "Motorola",
"total" : 2,
"high_ratings" : 1,
"medium_ratings" : 0,
"low_ratings" : 0,
"none_ratings" : 1
}
/* 2 */
{
"_id" : "Asus",
"total" : 2,
"high_ratings" : 1,
"medium_ratings" : 1,
"low_ratings" : 0,
"none_ratings" : 0
}
I want to group the all field of a collection with unique total. Let's assume there is collection like this:
id country state operator
121 IN HR AIRTEL
212 IN MH AIRTEL
213 US LA AT&T
214 UK JK VODAFONE
Output should be like this:
{
"country": { "IN": 2, "US":1, "UK":1 },
"state": { "HR":1, "MH":1, "LA":1, "JK": 1 },
"operator": { "AIRTEL":2, "AT&T": 1, "VODAFONE": 1 }
}
I am trying to use mongo aggregation framework, but can't really think how to do this?
I find out some similar to your output using aggregation check below code
db.collectionName.aggregate({
"$group": {
"_id": null,
"countryOfIN": {
"$sum": {
"$cond": [{
$eq: ["$country", "IN"]
}, 1, 0]
}
},
"countryOfUK": {
"$sum": {
"$cond": [{
$eq: ["$country", "UK"]
}, 1, 0]
}
},
"countryOfUS": {
"$sum": {
"$cond": [{
$eq: ["$country", "US"]
}, 1, 0]
}
},
"stateOfHR": {
"$sum": {
"$cond": [{
$eq: ["$state", "HR"]
}, 1, 0]
}
},
"stateOfMH": {
"$sum": {
"$cond": [{
$eq: ["$state", "MH"]
}, 1, 0]
}
},
"stateOfLA": {
"$sum": {
"$cond": [{
$eq: ["$state", "LA"]
}, 1, 0]
}
},
"stateOfJK": {
"$sum": {
"$cond": [{
$eq: ["$state", "JK"]
}, 1, 0]
}
},
"operatorOfAIRTEL": {
"$sum": {
"$cond": [{
$eq: ["$operator", "AIRTEL"]
}, 1, 0]
}
},
"operatorOfAT&T": {
"$sum": {
"$cond": [{
$eq: ["$operator", "AT&T"]
}, 1, 0]
}
},
"operatorOfVODAFONE": {
"$sum": {
"$cond": [{
$eq: ["$operator", "VODAFONE"]
}, 1, 0]
}
}
}
}, {
"$group": {
"_id": null,
"country": {
"$push": {
"IN": "$countryOfIN",
"UK": "$countryOfUK",
"US": "$countryOfUS"
}
},
"STATE": {
"$push": {
"HR": "$stateOfHR",
"MH": "$stateOfMH",
"LA": "$stateOfLA",
"JK": "$stateOfJK"
}
},
"operator": {
"$push": {
"AIRTEL": "$operatorOfAIRTEL",
"AT&T": "$operatorOfAT&T",
"VODAFONE": "$operatorOfVODAFONE"
}
}
}
}, {
"$project": {
"_id": 0,
"country": 1,
"STATE": 1,
"operator": 1
}
})
using $cond created groups of matched data and pushed them in second groups to combine.
An output format like you are looking for is not really suited to the aggregation framework since you are tranforming part of your data in to "key" names. The aggregation framework does not do this but rather sticks to database "best practice" as does not transform "data" to "key" names in any way.
You can perform a mapReduce operation instead with allows more flexibilty with the manipulation, but not as good performance due to the need to use JavaScript code to perform the manipulation:
db.collection.mapReduce(
function () {
var obj = {},
doc = this;
delete doc._id;
Object.keys(doc).forEach(function(key) {
obj[key] = {};
obj[key][doc[key]] = 1;
});
emit( null, obj );
},
function (key,values) {
var result = {};
values.forEach(function(value) {
Object.keys(value).forEach(function(outerKey) {
Object.keys(value[outerKey]).forEach(function(innerKey) {
if ( !result.hasOwnProperty(outerKey) ) {
result[outerKey] = {};
}
if ( result[outerKey].hasOwnProperty(innerKey) ) {
result[outerKey][innerKey] += value[outerKey][innerKey];
} else {
result[outerKey][innerKey] = value[outerKey][innerKey];
}
});
});
});
return result;
},
{ "out": { "inline": 1 } }
)
And in the stucture that applies to all mapReduce results:
{
"results" : [
{
"_id" : null,
"value" : {
"country" : {
"IN" : 2,
"US" : 1,
"UK" : 1
},
"state" : {
"HR" : 1,
"MH" : 1,
"LA" : 1,
"JK" : 1
},
"operator" : {
"AIRTEL" : 2,
"AT&T" : 1,
"VODAFONE" : 1
}
}
}
]
}
For the aggregation framework itself, it is better suited to producing aggregation results that are more consistently structured:
db.mapex.aggregate([
{ "$project": {
"country": 1,
"state": 1,
"operator": 1,
"type": { "$literal": ["country","state","operator"] }
}},
{ "$unwind": "$type" },
{ "$group": {
"_id": {
"type": "$type",
"key": { "$cond": {
"if": { "$eq": [ "$type", "country" ] },
"then": "$country",
"else": { "$cond": {
"if": { "$eq": [ "$type", "state" ] },
"then": "$state",
"else": "$operator"
}}
}}
},
"count": { "$sum": 1 }
}}
])
Which would output:
{ "_id" : { "type" : "state", "key" : "JK" }, "count" : 1 }
{ "_id" : { "type" : "country", "key" : "UK" }, "count" : 1 }
{ "_id" : { "type" : "country", "key" : "US" }, "count" : 1 }
{ "_id" : { "type" : "operator", "key" : "AT&T" }, "count" : 1 }
{ "_id" : { "type" : "state", "key" : "LA" }, "count" : 1 }
{ "_id" : { "type" : "operator", "key" : "AIRTEL" }, "count" : 2 }
{ "_id" : { "type" : "state", "key" : "MH" }, "count" : 1 }
{ "_id" : { "type" : "state", "key" : "HR" }, "count" : 1 }
{ "_id" : { "type" : "operator", "key" : "VODAFONE" }, "count" : 1 }
{ "_id" : { "type" : "country", "key" : "IN" }, "count" : 2 }
But is fairly easy to transform in client code while iterating the results:
var result = {};
db.mapex.aggregate([
{ "$project": {
"country": 1,
"state": 1,
"operator": 1,
"type": { "$literal": ["country","state","operator"] }
}},
{ "$unwind": "$type" },
{ "$group": {
"_id": {
"type": "$type",
"key": { "$cond": {
"if": { "$eq": [ "$type", "country" ] },
"then": "$country",
"else": { "$cond": {
"if": { "$eq": [ "$type", "state" ] },
"then": "$state",
"else": "$operator"
}}
}}
},
"count": { "$sum": 1 }
}}
]).forEach(function(doc) {
if ( !result.hasOwnProperty(doc._id.type) )
result[doc._id.type] = {};
result[doc._id.type][doc._id.key] = doc.count;
})
Which gives the final structure in "result":
{
"state" : {
"JK" : 1,
"LA" : 1,
"MH" : 1,
"HR" : 1
},
"country" : {
"UK" : 1,
"US" : 1,
"IN" : 2
},
"operator" : {
"AT&T" : 1,
"AIRTEL" : 2,
"VODAFONE" : 1
}
}
I have a mongodb collection called Events, containing baseball games. Here is an example of one record in the table:
{
"name" : "Game# 814",
"dateStart" : ISODate("2012-09-28T14:47:53.695Z"),
"_id" : ObjectId("53a1b24de3f25f4443d9747e"),
"stats" : [
{
"team" : ObjectId("53a11a43a8de6dd8375c940b"),
"teamName" : "Reds",
"_id" : ObjectId("53a1b24de3f25f4443d97480"),
"score" : 17
},
{
"team" : ObjectId("53a11a43a8de6dd8375c938d"),
"teamName" : "Yankees",
"_id" : ObjectId("53a1b24de3f25f4443d9747f"),
"score" : 12
}
]
"__v" : 0
}
I need help writing the query that returns standings for all teams. The result set should look like:
{
"team" : ObjectId("53a11a43a8de6dd8375c938d"),
"teamName" : "Yankees",
"wins" : <<number of Yankees wins>>
"losses" : <<number of Yankees losses>>
"draws" : <<number of Yankees draws>>
}
{
"team" : ObjectId("53a11a43a8de6dd8375c940b"),
"teamName" : "Reds",
"wins" : <<number of Reds wins>>
"losses" : <<number of Reds losses>>
"draws" : <<number of Reds draws>>
}
...
Here's the query I've started with...
db.events.aggregate(
{"$unwind": "$stats" },
{ $group : {
_id : "$stats.team",
gamesPlayed : { $sum : 1},
totalScore : { $sum : "$stats.score" }
}}
);
... which returns results:
{
"result" : [
{
"_id" : ObjectId("53a11a43a8de6dd8375c93cb"),
"gamesPlayed" : 125, // not a requirement... just trying to get $sum working
"totalScore" : 1213 // ...same here
},
{
"_id" : ObjectId("53a11a44a8de6dd8375c955f"),
"gamesPlayed" : 128,
"totalScore" : 1276
},
{
"_id" : ObjectId("53a11a44a8de6dd8375c9661"),
"gamesPlayed" : 152,
"totalScore" : 1509
},
....
It would seem advisable for you to keep your "wins", "losses", "draws" within your documents as you create or update them. But it is possible to do with aggregate if a little long winded
db.events.aggregate([
// Unwind the "stats" array
{ "$unwind": "$stats" },
// Combine the document with new fields
{ "$group": {
"_id": "$_id",
"firstTeam": { "$first": "$stats.team" },
"firstTeamName": { "$first": "$stats.teamName" },
"firstScore": { "$first": "$stats.score" },
"lastTeam": { "$last": "$stats.team" },
"lastTeamName": { "$last": "$stats.teamName" },
"lastScore": { "$last": "$stats.score" },
"minScore": { "$min": "$stats.score" },
"maxScore": { "$max": "$stats.score" }
}},
// Calculate by comparing scores
{ "$project": {
"firstTeam": 1,
"firstTeamName": 1,
"firstScore": 1,
"lastTeam": 1,
"lastTeamName": 1,
"lastScore": 1,
"firstWins": {
"$cond": [
{ "$gt": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"firstLosses": {
"$cond": [
{ "$lt": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"firstDraws": {
"$cond": [
{ "$eq": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"lastWins": {
"$cond": [
{ "$gt": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"lastLosses": {
"$cond": [
{ "$lt": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"lastDraws": {
"$cond": [
{ "$eq": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"type": { "$literal": [ true, false ] }
}},
// Unwind the "type"
{ "$unwind": "$type" },
// Group teams conditionally on "type"
{ "$group": {
"_id": {
"team": {
"$cond": [
"$type",
"$firstTeam",
"$lastTeam"
]
},
"teamName": {
"$cond": [
"$type",
"$firstTeamName",
"$lastTeamName"
]
}
},
"owins": {
"$sum": {
"$cond": [
"$type",
"$firstWins",
"$lastWins"
]
}
},
"olosses": {
"$sum": {
"$cond": [
"$type",
"$firstLosses",
"$lastLosses"
]
}
},
"odraws": {
"$sum": {
"$cond": [
"$type",
"$firstDraws",
"$lastDraws"
]
}
}
}},
// Project your final form
{ "$project": {
"_id": 0,
"team": "$_id.team",
"teamName": "$_id.teamName",
"wins": "$owins",
"losses": "$olosses",
"draws": "$odraws"
}}
])
The first part is to "re-shape" the document by unwinding the array and then grouping with "first" and "last" for defining fields for your two teams.
Then you want to $project through those documents and calculate your "wins", "losses" and "draws" for each team in the pairing. The additional thing is adding an array field for the two values true/false is convenient here. If you are on a pre 2.6 version of mongodb the $literal can be replaced with $const which is not documented but does the same thing.
Once you $unwind that "type" array, the documents can be split apart in the $group stage by evaluating whether to choose the "first" or "last" team field values via the use of $cond. This is a ternary operator that evaluates a true/false condition and returns the appropriate value according to that condition.
With a final $project your documents are formed exactly how you want.