I have a 3 Collections Assignments, Status, Assignee.
Assignments Fields : [_id, status, Assignee]
Assignee and Status Fields : [_id, name].
There can be many assignments associated with various Status and Assignee collections(linked via _id field), There is no nesting or complex data.
I need a query for all assignments ids where Assignees are the row, Status are the Columns, there combined cell is the count with Total counts at the end.
To help you visualize, I am attaching below image. I am new to complex Mongo DB Aggregate framework, kindly guide me to achieve query.
Note: Data in Status and Assignee collection will be dynamic. Nothing is predetermined in the Query. So, the Rows and Columns are going to grow dynamically in future, If the query is given pagination, then it would be of great help. I cannot write a query with hard coded status names like 'pending', 'completed' etc. As data shall grow and existing data may change like 'pending task', 'completed work'.
Below is my query
db.getCollection('Assignments').aggregate([
{
"$group": {
"_id": {
"assignee": "$assignee",
"statusId": "$statusId"
},
"statusCount": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.assignee",
"statuses": {
"$push": {
"statusId": "$_id.statusId",
"count": "$statusCount"
},
},
"count": { "$sum": "$statusCount" }
}
},
]);
Below is the output format:
{
"_id" : "John",
"statuses" : {
"statusId" : "Pending",
"count" : 3.0
},
"count" : 3.0
}
{
"_id" : "Katrina",
"statuses" : [{
"statusId" : "Pending",
"count" : 1.0
},
{
"statusId" : "Completed",
"count" : 1.0
},
{
"statusId" : "Assigned",
"count" : 1.0
}],
"count" : 3.0
}
{
"_id" : "Collins",
"statuses" : {
"statusId" : "Pending",
"count" : 4.0
},
"count" : 4.0
}
Expected Output is:
{
"_id" : "Katrina",
"Pending" : 1.0,
"Completed" : 1.0,
"Assigned" : 1.0,
"totalCount" : 3.0
}
Any Idea on how to many various statusId for different assignee as keys and not values in single document.
You need another $group stage after $unwind to count number of status based on statusId string value:
{
"$group": {
"_id": "$_id",
"Pending" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Pending"
]},
"$statuses.count",
0
]
}
},
"Completed" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Completed"
]},
"$statuses.count",
0
]
}
},
"Assigned" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Assigned"
]},
"$statuses.count",
0
]
}
},
"totalCount": { "$sum": 1 }
}
}
The final aggregate command:
db.getCollection('Assignments').aggregate([
{
"$group": {
"_id": {
"assignee": "$assignee",
"statusId": "$statusId"
},
"statusCount": { "$sum": 1 }
}
},
{
"$group": {
"_id": "$_id.assignee",
"statuses": {
"$push": {
"statusId": "$_id.statusId",
"count": "$statusCount"
},
},
"count": { "$sum": "$statusCount" }
}
},
{ "$unwind": "$statuses" },
{
"$group": {
"_id": "$_id",
"Pending" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Pending"
]},
"$statuses.count",
0
]
}
},
"Completed" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Completed"
]},
"$statuses.count",
0
]
}
},
"Assigned" : {
"$sum": {
"$cond": [
{ "$eq": [
"$statuses.statusId",
"Assigned"
]},
"$statuses.count",
0
]
}
},
"totalCount": { "$sum": 1 }
}
}
]);
Why not just keep statuses as an object so each status is a key/val pair. If that works you do the following
db.getCollection('Assignments').aggregate([
[
{
"$group": {
"_id": {
"assignee": "$assignee",
"statusId": "$statusId"
},
"statusCount": { "$sum": 1 }
},
},
{
"$group" : {
"_id" : "$_id.assignee",
"statuses" : {
"$push" : {
"k" : "$_id.statusId", // <- "k" as key value important for $arrayToObject Function
"v" : "$statusCount" // <- "v" as key value important for $arrayToObject Function
}
},
"count" : {
"$sum" : "$statusCount"
}
}
},
{
"$project" : {
"_id" : 1.0,
"statuses" : {
"$arrayToObject" : "$statuses"
},
"totalCount" : "$count"
}
}
],
{
"allowDiskUse" : false
}
);
This gives you:
{
"_id" : "Katrina",
"statuses": {
"Pending" : 1.0,
"Completed" : 1.0,
"Assigned" : 1.0,
},
"totalCount" : 3.0
}
A compromise having it one layer deeper but still the shape of statuses you wanted and dynamic with each new statusId added.
Related
So I'm learning mongodb and I got a collection of writers to train.
Here I'm trying to count works by sorting them by country and gender of the author. This is what I accoplished so far:
db.writers.aggregate([
{ "$match": { "gender": {"$ne": male}}},
{ "$group": {
"_id": {
"country_id": "$country_id",
"type": "$type"
},
}},
{ "$group": {
"_id": "$_id.country_id",
"literary_work": {
"$push": {
"type": "$_id.type",
"count": { "$sum": "$type" }
}
},
"total": { "$sum": "$type" }
}},
{ "$sort": { "country_id": 1 } },
{ "$project": {
"literary_work": { "$slice": [ "$literary_work", 3 ] },
"total": { "$sum": "$type" }
}}
])
Sadly, the output that I get is not the one I'm expecting:
"_id" : GREAT BRITAIN,
"literary_work" : [
{
"type" : "POEM",
"count" : 0
},
{
"type" : "NOVEL",
"count" : 0
},
{
"type" : "SHORT STORY",
"count" : 0
}
],
"total" : 0
Could anyone tell me where do I insert the count stage or what is my mistake?)
upd:
Data sample:
{
"_id" : ObjectId("5f115c5d5f62f9f482cd7a49"),
"author" : George Sand,
"gender" : female,
"country_id" : FRANCE,
"title": "Consuelo",
"type" : "NOVEL",
}
Expected result (NB! this is a result for both genders):
{
"_id" : FRANCE,
"count" : 59.0,
"literary_work" : [
{
"type" : "POEM",
"count" : 14.0
},
{
"type" : "NOVEL",
"count" : 34.0
},
{
"type" : "SHORT STORY",
"count" : 11.0
}
]
}
Your implementation is correct way but there are missing things:
missed count in first $group
on the base of first group count it can count whole count of literary_work
and $project is not needed from your query
Corrected things in query,
db.writers.aggregate([
{
$match: {
gender: { $ne: "male" }
}
},
{
$group: {
_id: {
country_id: "$country_id",
type: "$type"
},
// missed this
count: { $sum: 1 }
}
},
{
$group: {
_id: "$_id.country_id",
// this count will be on the base of first group count
count: { $sum: "$count" },
literary_work: {
$push: {
type: "$_id.type",
// add count in inner count
count: "$count"
}
}
}
},
// corrected from country_id to _id
{
$sort: { "_id": 1 }
}
])
Working Playground: https://mongoplayground.net/p/JWP7qdDY6cc
I have some documents in a collection which looks like this
{
"_id" : "5a2e50b32d43ba00010041e5",
account_id:"23232323"
status:"accepted",
keyname:"java"
},
{
"_id" : "5a2e54332d43ba00010041e5",
account_id:"2323233"
status:"pending",
keyname:"java"
},
{
"_id" : "5a2e54332d43ba00010041e5",
account_id:"23232sdsd3"
status:"pending",
keyname:"Nodejs"
}
I need to get the counts of the pending and accepted status for each keyname for a particular account_id
eg: should give a result like this.
{
keyname:"java",
pending:10,
accepted:10
}
This is the code that I have tried out
db.getCollection("programs").aggregate([
{ "$match": { "account_id": "1" } },
{ "$group": { "_id": "$keyname", "count": { "$sum": 1 } } },
{ "$match": { "_id": { "$ne": null } } }
])
which gives a result like this
{
"_id" : "java",
"count" : 3.0
},
{
"_id" : "nodejs",
"count" : 3.0
},
{
"_id" : "C#",
"count" : 3.0
}
You can use below aggregation
db.collection.aggregate([
{ "$match": { "account_id": "1" } },
{ "$group": {
"_id": "$keyname",
"accepted": {
"$sum": {
"$cond": [
{ "$eq": ["$status", "accepted"] },
0,
1
]
}
},
"pending": {
"$sum": {
"$cond": [
{ "$eq": ["$status", "pending"] },
0,
1
]
}
}
}}
])
Mongo query generated out of java code:
{
"pipeline": [{
"$match": {
"Id": "09cd9a5a-85c5-4948-808b-20a52d92381a"
}
},
{
"$group": {
"_id": "$result",
"id": {
"$first": "$result"
},
"labelKey": {
"$first": {
"$ifNull": ["$result",
"$result"]
}
},
"value": {
"$sum": 1
}
}
}]
}
Field 'result' can have values like Approved, Rejected, null and "" (empty string). What I am trying to achieve is combining the count of both null and empty together.
So that the empty string Id will have the count of both null and "", which is equal to 4
I'm sure theres a more "proper" way but this is what i could quickly come up with:
[
{
"$group" : {
"_id" : "$result",
"id" : {
"$first" : "$result"
},
"labelKey" : {
"$first" : {
"$ifNull" : [
"$result",
"$result"
]
}
},
"value" : {
"$sum" : 1.0
}
}
},
{
"$group" : {
"_id" : {
"$cond" : [{
$or: [
{"$eq": ["$_id", "Approved"]},
{"$eq": ["$_id", "Rejected"]},
]}},
"$_id",
""
]
},
"temp" : {
"$push" : {
"_id" : "$_id",
"labelKey" : "$labelKey"
}
},
"count" : {
"$sum" : "$value"
}
}
},
{
"$unwind" : "$temp"
},
{
"$project" : {
"_id" : "$temp._id",
"labelKey": "$temp.labelKey",
"count" : "$count"
}
}
],
);
Due to the fact the second group is only on 4 documents tops i don't feel too bad about doing this.
I have used $facet.
The MongoDB stage $facet lets you run several independent pipelines within the stage of a pipeline, all using the same data. This means that you can run several aggregations with the same preliminary stages, and successive stages.
var queries = [{
"$match": {
"Id": "09cd9a5a-85c5-4948-808b-20a52d92381a"
}
},{
$facet: {//
"empty": [
{
$match : {
result : { $in : ['',null]}
}
},{
"$group" : {
"_id" : null,
value : { $sum : 1}
}
}
],
"non_empty": [
{
$match : {
result : { $nin : ['',null]}
}
},{
"$group" : {
"_id" : '$result',
value : { $sum : 1}
}
}
]
}
},
{
$project: {
results: {
$concatArrays: [ "$empty", "$non_empty" ]
}
}
}];
Output :
{
"results": [{
"_id": null,
"value": 52 // count of both '' and null.
}, {
"_id": "Approved",
"value": 83
}, {
"_id": "Rejected",
"value": 3661
}]
}
Changing the group by like below solved the problem
{
"$group": {
"_id": {
"$ifNull": ["$result", ""]
},
"id": {
"$first": "$result"
},
"labelKey": {
"$first": {
"$ifNull": ["$result",
"$result"]
}
},
"value": {
"$sum": 1
}
}
}
My collection will look this,
{
"_id" : ObjectId("55c8bd1d85b83e06dc54c0eb"),
"name" : "xxx",
"salary" : 10000,
"type" : "type1"
}
{
"_id" : ObjectId("55c8bd1d85b83e06dc54c0eb"),
"name" : "aaa",
"salary" : 10000,
"type" : "type2"
}
{
"_id" : ObjectId("55c8bd1d85b83e06dc54c0eb"),
"name" : "ccc",
"salary" : 10000,
"type" : "type2"
}
My query params will be coming as,
{salary=10000, type=type2}
so based on the query I need to fetch the count of above query params
The result should be something like this,
{ category: 'type1', count: 500 } { category: 'type2', count: 200 } { category: 'name', count: 100 }
Now I am getting count by hitting three different queries and constructing the result (or) server side iteration I can get the result.
Can anyone suggest or provide me good way to get above result
Your quesstion is not very clearly presented, but what it seems you wanted to do here was count the occurances of the data in the fields, optionally filtering those fields by the values that matches the criteria.
Here the $cond operator allows you to tranform a logical condition into a value:
db.collection.aggregate([
{ "$group": {
"_id": null,
"name": { "$sum": 1 },
"salary": {
"$sum": {
"$cond": [
{ "$gte": [ "$salary", 1000 ] },
1,
0
]
}
},
"type": {
"$sum": {
"$cond": [
{ "$eq": [ "$type", "type2" ] },
1,
0
]
}
}
}}
])
All values are in the same document, and it does not really make any sense to split them up here as this is additional work in the pipeline.
{ "_id" : null, "name" : 3, "salary" : 3, "type" : 2 }
Otherwise in the long form, which is not very performant due to needing to make a copy of each document for every key looks like this:
db.collection.aggregate([
{ "$project": {
"name": 1,
"salary": 1,
"type": 1,
"category": { "$literal": ["name","salary","type"] }
}},
{ "$unwind": "$category" },
{ "$group": {
"_id": "$category",
"count": {
"$sum": {
"$cond": [
{ "$and": [
{ "$eq": [ "$category", "name"] },
{ "$ifNull": [ "$name", false ] }
]},
1,
{ "$cond": [
{ "$and": [
{ "$eq": [ "$category", "salary" ] },
{ "$gte": [ "$salary", 1000 ] }
]},
1,
{ "$cond": [
{ "$and": [
{ "$eq": [ "$category", "type" ] },
{ "$eq": [ "$type", "type2" ] }
]},
1,
0
]}
]}
]
}
}
}}
])
And it's output:
{ "_id" : "type", "count" : 2 }
{ "_id" : "salary", "count" : 3 }
{ "_id" : "name", "count" : 3 }
If your documents do not have uniform key names or otherwise cannot specify each key in your pipeline condition, then apply with mapReduce instead:
db.collection.mapReduce(
function() {
var doc = this;
delete doc._id;
Object.keys(this).forEach(function(key) {
var value = (( key == "salary") && ( doc[key] < 1000 ))
? 0
: (( key == "type" ) && ( doc[key] != "type2" ))
? 0
: 1;
emit(key,value);
});
},
function(key,values) {
return Array.sum(values);
},
{
"out": { "inline": 1 }
}
);
And it's output:
"results" : [
{
"_id" : "name",
"value" : 3
},
{
"_id" : "salary",
"value" : 3
},
{
"_id" : "type",
"value" : 2
}
]
Which is basically the same thing with a conditional count, except that you only specify the "reverse" of the conditions you want and only for the fields you want to filter conditions on. And of course this output format is simple to emit as separate documents.
The same approach applies where to test the condition is met on the fields you want conditions for and return 1 where the condition is met or 0 where it is not for the summing the count.
You can use aggregation as following query:
db.collection.aggregate({
$match: {
salary: 10000,
//add any other condition here
}
}, {
$group: {
_id: "$type",
"count": {
$sum: 1
}
}
}, {
$project: {
"category": "$_id",
"count": 1,
_id: 0
}
}
I have a mongodb collection called Events, containing baseball games. Here is an example of one record in the table:
{
"name" : "Game# 814",
"dateStart" : ISODate("2012-09-28T14:47:53.695Z"),
"_id" : ObjectId("53a1b24de3f25f4443d9747e"),
"stats" : [
{
"team" : ObjectId("53a11a43a8de6dd8375c940b"),
"teamName" : "Reds",
"_id" : ObjectId("53a1b24de3f25f4443d97480"),
"score" : 17
},
{
"team" : ObjectId("53a11a43a8de6dd8375c938d"),
"teamName" : "Yankees",
"_id" : ObjectId("53a1b24de3f25f4443d9747f"),
"score" : 12
}
]
"__v" : 0
}
I need help writing the query that returns standings for all teams. The result set should look like:
{
"team" : ObjectId("53a11a43a8de6dd8375c938d"),
"teamName" : "Yankees",
"wins" : <<number of Yankees wins>>
"losses" : <<number of Yankees losses>>
"draws" : <<number of Yankees draws>>
}
{
"team" : ObjectId("53a11a43a8de6dd8375c940b"),
"teamName" : "Reds",
"wins" : <<number of Reds wins>>
"losses" : <<number of Reds losses>>
"draws" : <<number of Reds draws>>
}
...
Here's the query I've started with...
db.events.aggregate(
{"$unwind": "$stats" },
{ $group : {
_id : "$stats.team",
gamesPlayed : { $sum : 1},
totalScore : { $sum : "$stats.score" }
}}
);
... which returns results:
{
"result" : [
{
"_id" : ObjectId("53a11a43a8de6dd8375c93cb"),
"gamesPlayed" : 125, // not a requirement... just trying to get $sum working
"totalScore" : 1213 // ...same here
},
{
"_id" : ObjectId("53a11a44a8de6dd8375c955f"),
"gamesPlayed" : 128,
"totalScore" : 1276
},
{
"_id" : ObjectId("53a11a44a8de6dd8375c9661"),
"gamesPlayed" : 152,
"totalScore" : 1509
},
....
It would seem advisable for you to keep your "wins", "losses", "draws" within your documents as you create or update them. But it is possible to do with aggregate if a little long winded
db.events.aggregate([
// Unwind the "stats" array
{ "$unwind": "$stats" },
// Combine the document with new fields
{ "$group": {
"_id": "$_id",
"firstTeam": { "$first": "$stats.team" },
"firstTeamName": { "$first": "$stats.teamName" },
"firstScore": { "$first": "$stats.score" },
"lastTeam": { "$last": "$stats.team" },
"lastTeamName": { "$last": "$stats.teamName" },
"lastScore": { "$last": "$stats.score" },
"minScore": { "$min": "$stats.score" },
"maxScore": { "$max": "$stats.score" }
}},
// Calculate by comparing scores
{ "$project": {
"firstTeam": 1,
"firstTeamName": 1,
"firstScore": 1,
"lastTeam": 1,
"lastTeamName": 1,
"lastScore": 1,
"firstWins": {
"$cond": [
{ "$gt": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"firstLosses": {
"$cond": [
{ "$lt": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"firstDraws": {
"$cond": [
{ "$eq": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"lastWins": {
"$cond": [
{ "$gt": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"lastLosses": {
"$cond": [
{ "$lt": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"lastDraws": {
"$cond": [
{ "$eq": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"type": { "$literal": [ true, false ] }
}},
// Unwind the "type"
{ "$unwind": "$type" },
// Group teams conditionally on "type"
{ "$group": {
"_id": {
"team": {
"$cond": [
"$type",
"$firstTeam",
"$lastTeam"
]
},
"teamName": {
"$cond": [
"$type",
"$firstTeamName",
"$lastTeamName"
]
}
},
"owins": {
"$sum": {
"$cond": [
"$type",
"$firstWins",
"$lastWins"
]
}
},
"olosses": {
"$sum": {
"$cond": [
"$type",
"$firstLosses",
"$lastLosses"
]
}
},
"odraws": {
"$sum": {
"$cond": [
"$type",
"$firstDraws",
"$lastDraws"
]
}
}
}},
// Project your final form
{ "$project": {
"_id": 0,
"team": "$_id.team",
"teamName": "$_id.teamName",
"wins": "$owins",
"losses": "$olosses",
"draws": "$odraws"
}}
])
The first part is to "re-shape" the document by unwinding the array and then grouping with "first" and "last" for defining fields for your two teams.
Then you want to $project through those documents and calculate your "wins", "losses" and "draws" for each team in the pairing. The additional thing is adding an array field for the two values true/false is convenient here. If you are on a pre 2.6 version of mongodb the $literal can be replaced with $const which is not documented but does the same thing.
Once you $unwind that "type" array, the documents can be split apart in the $group stage by evaluating whether to choose the "first" or "last" team field values via the use of $cond. This is a ternary operator that evaluates a true/false condition and returns the appropriate value according to that condition.
With a final $project your documents are formed exactly how you want.