Calculate bias and variance in ridge regression MATLAB - matlab

I can't get my mind around the concept of how to calculate bias and variance from a random set.
I have created the code to generate a random normal set of numbers.
% Generate random w, x, and noise from standard Gaussian
w = randn(10,1);
x = randn(600,10);
noise = randn(600,1);
and then extract the y values
y = x*w + noise;
After that I split my data into a training (100) and test (500) set
% Split data set into a training (100) and a test set (500)
x_train = x([ 1:100],:);
x_test = x([101:600],:);
y_train = y([ 1:100],:);
y_test = y([101:600],:);
train_l = length(y_train);
test_l = length(y_test);
Then I calculated the w for a specific value of lambda (1.2)
lambda = 1.2;
% Calculate the optimal w
A = x_train'*x_train+lambda*train_l*eye(10,10);
B = x_train'*y_train;
w_train = A\B;
Finally, I am computing the square error:
% Compute the mean squared error on both the training and the
% test set
sum_train = sum((x_train*w_train - y_train).^2);
MSE_train = sum_train/train_l;
sum_test = sum((x_test*w_train - y_test).^2);
MSE_test = sum_test/test_l;
I know that if I create a vector of lambda (I have already done that) over some iterations I can plot the average MSE_train and MSE_test as a function of lambda, where then I will be able to verify that large differences between MSE_test and MSE_train indicate high variance, thus overfit.
But, what I want to do extra, is to calculate the variance and the bias^2.
Taken from Ridge Regression Notes at page 7, it guides us how to calculate the bias and the variance.
My questions is, should I follow its steps on the whole random dataset (600) or on the training set? I think the bias^2 and the variance should be calculated on the training set. Also, in Theorem 2 (page 7 again) the bias is calculated by the negative product of lambda, W, and beta, the beta is my original w (w = randn(10,1)) am I right?
Sorry for the long post, but I really want to understand how the concept works in practice.
UPDATE 1:
Ok, so following the previous paper didn't generate any good results. So, I took the standard form of Ridge Regression Bias-Variance which is:
Based on that, I created (I used the test set):
% Bias and Variance
sum_bias=sum((y_test - mean(x_test*w_train)).^2);
Bias = sum_bias/test_l;
sum_var=sum((mean(x_test*w_train)- x_test*w_train).^2);
Variance = sum_var/test_l;
But, after 200 iterations and for 10 different lambdas this is what I get, which is not what I expected.
Where in fact, I was hoping for something like this:

sum_bias=sum((y_test - mean(x_test*w_train)).^2); Bias = sum_bias/test_l
Why have you squared the difference between y_test and y_predicted = x_test*w_train?
I don't believe your formula for bias is correct. In your question, the 'bias term' above in blue is the bias^2 however surely your formula is neither the bias nor the bias^2 since you have only squared the residuals, not the entire bias?

Related

Matlab : Convolution and deconvolution results weird

Data x is input to an autoregreesive model (AR) model. The output of the AR model is corrupted with Additive White Gaussian Noise at SNR = 30 dB. The observations are denoted by noisy_y.
Let there be close estimates h_hat of the AR model (these are obtained from Least Squares estimation). I want to see how close the input obtained from deconvolution with h_hat and the measurements is to the known x.
My confusion is which variable to use for deconvolution -- clean y or noisy y?
Upon deconvolution, I should get x_hat. I am not sure if the correct way to perform deconvolution is using the noisy_y or using the y before adding noise. I have used the following code.
Can somebody please help in what is the correct method to plot x and x_hat.
Below is the plot of x vs x_hat. As can be seen, that these do not match. Where is my understand wrong? Please help.
The code is:
clear all
N = 200; %number of data points
a1=0.1650;
b1=-0.850;
h = [1 a1 b1]; %true coefficients
x = rand(1,N);
%%AR model
y = filter(1,h,x); %transmitted signal through AR channel
noisy_y = awgn(y,30,'measured');
hat_h= [1 0.133 0.653];
x_hat = filter(hat_h,1,noisy_y); %deconvolution
plot(1:50,x(1:50),'b');
hold on;
plot(1:50,x_hat(1:50),'-.rd');
A first issue is that the coefficients h of your AR model correspond to an unstable system since one of its poles is located outside the unit circle:
>> abs(roots(h))
ans =
1.00814
0.84314
Parameter estimation techniques are then quite likely to fail to converge given a diverging input sequence. Indeed, looking at the stated hat_h = [1 0.133 0.653] it is pretty clear that the parameter estimation did not converge anywhere near the actual coefficients. In your specific case you did not provide the code illustrating how you obtained hat_h (other than specifying that it was "obtained from Least Squares estimation"), so it isn't possible to further comment on what went wrong with your estimation.
That said, the standard formulation of Least Mean Squares (LMS) filters is given for an MA model. A common method for AR parameter estimation is to solve the Yule-Walker equations:
hat_h = aryule(noisy_y - mean(noisy_y), length(h)-1);
If we were to use this estimation method with the stable system defined by:
h = [1 -a1 -b1];
x = rand(1,N);
%%AR model
y = filter(1,h,x); %transmitted signal through AR channel
noisy_y = awgn(y,30,'measured');
hat_h = aryule(noisy_y - mean(noisy_y), length(h)-1);
x_hat = filter(hat_h,1,noisy_y); %deconvolution
The plot of x and x_hat would look like:

How should I use maximum likelihood classifier in Matlab? [duplicate]

I am implementing logistic regression using batch gradient descent. There are two classes into which the input samples are to be classified. The classes are 1 and 0. While training the data, I am using the following sigmoid function:
t = 1 ./ (1 + exp(-z));
where
z = x*theta
And I am using the following cost function to calculate cost, to determine when to stop training.
function cost = computeCost(x, y, theta)
htheta = sigmoid(x*theta);
cost = sum(-y .* log(htheta) - (1-y) .* log(1-htheta));
end
I am getting the cost at each step to be NaN as the values of htheta are either 1 or zero in most cases. What should I do to determine the cost value at each iteration?
This is the gradient descent code for logistic regression:
function [theta,cost_history] = batchGD(x,y,theta,alpha)
cost_history = zeros(1000,1);
for iter=1:1000
htheta = sigmoid(x*theta);
new_theta = zeros(size(theta,1),1);
for feature=1:size(theta,1)
new_theta(feature) = theta(feature) - alpha * sum((htheta - y) .*x(:,feature))
end
theta = new_theta;
cost_history(iter) = computeCost(x,y,theta);
end
end
There are two possible reasons why this may be happening to you.
The data is not normalized
This is because when you apply the sigmoid / logit function to your hypothesis, the output probabilities are almost all approximately 0s or all 1s and with your cost function, log(1 - 1) or log(0) will produce -Inf. The accumulation of all of these individual terms in your cost function will eventually lead to NaN.
Specifically, if y = 0 for a training example and if the output of your hypothesis is log(x) where x is a very small number which is close to 0, examining the first part of the cost function would give us 0*log(x) and will in fact produce NaN. Similarly, if y = 1 for a training example and if the output of your hypothesis is also log(x) where x is a very small number, this again would give us 0*log(x) and will produce NaN. Simply put, the output of your hypothesis is either very close to 0 or very close to 1.
This is most likely due to the fact that the dynamic range of each feature is widely different and so a part of your hypothesis, specifically the weighted sum of x*theta for each training example you have will give you either very large negative or positive values, and if you apply the sigmoid function to these values, you'll get very close to 0 or 1.
One way to combat this is to normalize the data in your matrix before performing training using gradient descent. A typical approach is to normalize with zero-mean and unit variance. Given an input feature x_k where k = 1, 2, ... n where you have n features, the new normalized feature x_k^{new} can be found by:
m_k is the mean of the feature k and s_k is the standard deviation of the feature k. This is also known as standardizing data. You can read up on more details about this on another answer I gave here: How does this code for standardizing data work?
Because you are using the linear algebra approach to gradient descent, I'm assuming you have prepended your data matrix with a column of all ones. Knowing this, we can normalize your data like so:
mX = mean(x,1);
mX(1) = 0;
sX = std(x,[],1);
sX(1) = 1;
xnew = bsxfun(#rdivide, bsxfun(#minus, x, mX), sX);
The mean and standard deviations of each feature are stored in mX and sX respectively. You can learn how this code works by reading the post I linked to you above. I won't repeat that stuff here because that isn't the scope of this post. To ensure proper normalization, I've made the mean and standard deviation of the first column to be 0 and 1 respectively. xnew contains the new normalized data matrix. Use xnew with your gradient descent algorithm instead. Now once you find the parameters, to perform any predictions you must normalize any new test instances with the mean and standard deviation from the training set. Because the parameters learned are with respect to the statistics of the training set, you must also apply the same transformations to any test data you want to submit to the prediction model.
Assuming you have new data points stored in a matrix called xx, you would do normalize then perform the predictions:
xxnew = bsxfun(#rdivide, bsxfun(#minus, xx, mX), sX);
Now that you have this, you can perform your predictions:
pred = sigmoid(xxnew*theta) >= 0.5;
You can change the threshold of 0.5 to be whatever you believe is best that determines whether examples belong in the positive or negative class.
The learning rate is too large
As you mentioned in the comments, once you normalize the data the costs appear to be finite but then suddenly go to NaN after a few iterations. Normalization can only get you so far. If your learning rate or alpha is too large, each iteration will overshoot in the direction towards the minimum and would thus make the cost at each iteration oscillate or even diverge which is what is appearing to be happening. In your case, the cost is diverging or increasing at each iteration to the point where it is so large that it can't be represented using floating point precision.
As such, one other option is to decrease your learning rate alpha until you see that the cost function is decreasing at each iteration. A popular method to determine what the best learning rate would be is to perform gradient descent on a range of logarithmically spaced values of alpha and seeing what the final cost function value is and choosing the learning rate that resulted in the smallest cost.
Using the two facts above together should allow gradient descent to converge quite nicely, assuming that the cost function is convex. In this case for logistic regression, it most certainly is.
Let's assume you have an observation where:
the true value is y_i = 1
your model is quite extreme and says that P(y_i = 1) = 1
Then your cost function will get a value of NaN because you're adding 0 * log(0), which is undefined. Hence:
Your formula for the cost function has a problem (there is a subtle 0, infinity issue)!
As #rayryeng pointed out, 0 * log(0) produces a NaN because 0 * Inf isn't kosher. This is actually a huge problem: if your algorithm believes it can predict a value perfectly, it incorrectly assigns a cost of NaN.
Instead of:
cost = sum(-y .* log(htheta) - (1-y) .* log(1-htheta));
You can avoid multiplying 0 by infinity by instead writing your cost function in Matlab as:
y_logical = y == 1;
cost = sum(-log(htheta(y_logical))) + sum( - log(1 - htheta(~y_logical)));
The idea is if y_i is 1, we add -log(htheta_i) to the cost, but if y_i is 0, we add -log(1 - htheta_i) to the cost. This is mathematically equivalent to -y_i * log(htheta_i) - (1 - y_i) * log(1- htheta_i) but without running into numerical problems that essentially stem from htheta_i being equal to 0 or 1 within the limits of double precision floating point.
It happened to me because an indetermination of the type:
0*log(0)
This can happen when one of the predicted values Y equals either 0 or 1.
In my case the solution was to add an if statement to the python code as follows:
y * np.log (Y) + (1-y) * np.log (1-Y) if ( Y != 1 and Y != 0 ) else 0
This way, when the actual value (y) and the predicted one (Y) are equal, no cost needs to be computed, which is the expected behavior.
(Notice that when a given Y is converging to 0 the left addend is canceled (because of y=0) and the right addend tends toward 0. The same happens when Y converges to 1, but with the opposite addend.)
(There is also a very rare scenario, which you probably won't need to worry about, where y=0 and Y=1 or viceversa, but if your dataset is standarized and the weights are properly initialized it won't be an issue.)

Cost function in logistic regression gives NaN as a result

I am implementing logistic regression using batch gradient descent. There are two classes into which the input samples are to be classified. The classes are 1 and 0. While training the data, I am using the following sigmoid function:
t = 1 ./ (1 + exp(-z));
where
z = x*theta
And I am using the following cost function to calculate cost, to determine when to stop training.
function cost = computeCost(x, y, theta)
htheta = sigmoid(x*theta);
cost = sum(-y .* log(htheta) - (1-y) .* log(1-htheta));
end
I am getting the cost at each step to be NaN as the values of htheta are either 1 or zero in most cases. What should I do to determine the cost value at each iteration?
This is the gradient descent code for logistic regression:
function [theta,cost_history] = batchGD(x,y,theta,alpha)
cost_history = zeros(1000,1);
for iter=1:1000
htheta = sigmoid(x*theta);
new_theta = zeros(size(theta,1),1);
for feature=1:size(theta,1)
new_theta(feature) = theta(feature) - alpha * sum((htheta - y) .*x(:,feature))
end
theta = new_theta;
cost_history(iter) = computeCost(x,y,theta);
end
end
There are two possible reasons why this may be happening to you.
The data is not normalized
This is because when you apply the sigmoid / logit function to your hypothesis, the output probabilities are almost all approximately 0s or all 1s and with your cost function, log(1 - 1) or log(0) will produce -Inf. The accumulation of all of these individual terms in your cost function will eventually lead to NaN.
Specifically, if y = 0 for a training example and if the output of your hypothesis is log(x) where x is a very small number which is close to 0, examining the first part of the cost function would give us 0*log(x) and will in fact produce NaN. Similarly, if y = 1 for a training example and if the output of your hypothesis is also log(x) where x is a very small number, this again would give us 0*log(x) and will produce NaN. Simply put, the output of your hypothesis is either very close to 0 or very close to 1.
This is most likely due to the fact that the dynamic range of each feature is widely different and so a part of your hypothesis, specifically the weighted sum of x*theta for each training example you have will give you either very large negative or positive values, and if you apply the sigmoid function to these values, you'll get very close to 0 or 1.
One way to combat this is to normalize the data in your matrix before performing training using gradient descent. A typical approach is to normalize with zero-mean and unit variance. Given an input feature x_k where k = 1, 2, ... n where you have n features, the new normalized feature x_k^{new} can be found by:
m_k is the mean of the feature k and s_k is the standard deviation of the feature k. This is also known as standardizing data. You can read up on more details about this on another answer I gave here: How does this code for standardizing data work?
Because you are using the linear algebra approach to gradient descent, I'm assuming you have prepended your data matrix with a column of all ones. Knowing this, we can normalize your data like so:
mX = mean(x,1);
mX(1) = 0;
sX = std(x,[],1);
sX(1) = 1;
xnew = bsxfun(#rdivide, bsxfun(#minus, x, mX), sX);
The mean and standard deviations of each feature are stored in mX and sX respectively. You can learn how this code works by reading the post I linked to you above. I won't repeat that stuff here because that isn't the scope of this post. To ensure proper normalization, I've made the mean and standard deviation of the first column to be 0 and 1 respectively. xnew contains the new normalized data matrix. Use xnew with your gradient descent algorithm instead. Now once you find the parameters, to perform any predictions you must normalize any new test instances with the mean and standard deviation from the training set. Because the parameters learned are with respect to the statistics of the training set, you must also apply the same transformations to any test data you want to submit to the prediction model.
Assuming you have new data points stored in a matrix called xx, you would do normalize then perform the predictions:
xxnew = bsxfun(#rdivide, bsxfun(#minus, xx, mX), sX);
Now that you have this, you can perform your predictions:
pred = sigmoid(xxnew*theta) >= 0.5;
You can change the threshold of 0.5 to be whatever you believe is best that determines whether examples belong in the positive or negative class.
The learning rate is too large
As you mentioned in the comments, once you normalize the data the costs appear to be finite but then suddenly go to NaN after a few iterations. Normalization can only get you so far. If your learning rate or alpha is too large, each iteration will overshoot in the direction towards the minimum and would thus make the cost at each iteration oscillate or even diverge which is what is appearing to be happening. In your case, the cost is diverging or increasing at each iteration to the point where it is so large that it can't be represented using floating point precision.
As such, one other option is to decrease your learning rate alpha until you see that the cost function is decreasing at each iteration. A popular method to determine what the best learning rate would be is to perform gradient descent on a range of logarithmically spaced values of alpha and seeing what the final cost function value is and choosing the learning rate that resulted in the smallest cost.
Using the two facts above together should allow gradient descent to converge quite nicely, assuming that the cost function is convex. In this case for logistic regression, it most certainly is.
Let's assume you have an observation where:
the true value is y_i = 1
your model is quite extreme and says that P(y_i = 1) = 1
Then your cost function will get a value of NaN because you're adding 0 * log(0), which is undefined. Hence:
Your formula for the cost function has a problem (there is a subtle 0, infinity issue)!
As #rayryeng pointed out, 0 * log(0) produces a NaN because 0 * Inf isn't kosher. This is actually a huge problem: if your algorithm believes it can predict a value perfectly, it incorrectly assigns a cost of NaN.
Instead of:
cost = sum(-y .* log(htheta) - (1-y) .* log(1-htheta));
You can avoid multiplying 0 by infinity by instead writing your cost function in Matlab as:
y_logical = y == 1;
cost = sum(-log(htheta(y_logical))) + sum( - log(1 - htheta(~y_logical)));
The idea is if y_i is 1, we add -log(htheta_i) to the cost, but if y_i is 0, we add -log(1 - htheta_i) to the cost. This is mathematically equivalent to -y_i * log(htheta_i) - (1 - y_i) * log(1- htheta_i) but without running into numerical problems that essentially stem from htheta_i being equal to 0 or 1 within the limits of double precision floating point.
It happened to me because an indetermination of the type:
0*log(0)
This can happen when one of the predicted values Y equals either 0 or 1.
In my case the solution was to add an if statement to the python code as follows:
y * np.log (Y) + (1-y) * np.log (1-Y) if ( Y != 1 and Y != 0 ) else 0
This way, when the actual value (y) and the predicted one (Y) are equal, no cost needs to be computed, which is the expected behavior.
(Notice that when a given Y is converging to 0 the left addend is canceled (because of y=0) and the right addend tends toward 0. The same happens when Y converges to 1, but with the opposite addend.)
(There is also a very rare scenario, which you probably won't need to worry about, where y=0 and Y=1 or viceversa, but if your dataset is standarized and the weights are properly initialized it won't be an issue.)

GMModel - how do I use this to predict a label's data?

I've made a GMModel using fitgmdist. The idea is to produce two gaussian distributions on the data and use that to predict their labels. How can I determine if a future data point fits into one of those distributions? Am I misunderstanding the purpose of a GMModel?
clear;
load C:\Users\Daniel\Downloads\data1 data;
% Mixed Gaussian
GMModel = fitgmdist(data(:, 1:4),2)
Produces
GMModel =
Gaussian mixture distribution with 2 components in 4 dimensions
Component 1:
Mixing proportion: 0.509709
Mean: 2.3254 -2.5373 3.9288 0.4863
Component 2:
Mixing proportion: 0.490291
Mean: 2.5161 -2.6390 0.8930 0.4833
Edit:
clear;
load C:\Users\Daniel\Downloads\data1 data;
% Mixed Gaussian
GMModel = fitgmdist(data(:, 1:4),2);
P = posterior(GMModel, data(:, 1:4));
X = round(P)
blah = X(:, 1)
dah = data(:, 5)
Y = max(mean(blah == dah), mean(~blah == dah))
I don't understand why you round the posterior values. Here is what I would do after fitting a mixture model.
P = posterior(GMModel, data(:, 1:4));
[~,Y] = max(P,[],2);
Now Y contains the labels that is index of which Gaussian the data belongs in-terms of maximum aposterior (MAP). Important thing to do is to align the labels before evaluating the classification error. Since renumbering might happen, i.e., Gaussian component 1 in the true might be component 2 in the clustering produced and so on. May be that why you are getting varying accuracy ranging from 51% accuracy to 95% accuracy, in addition to other subtle problems.

How can we produce kappa and delta in the following model using Matlab?

I have a following stochastic model describing evolution of a process (Y) in space and time. Ds and Dt are domain in space (2D with x and y axes) and time (1D with t axis). This model is usually known as mixed-effects model or components-of-variation models
I am currently developing Y as follow:
%# Time parameters
T=1:1:20; % input
nT=numel(T);
%# Grid and model parameters
nRow=100;
nCol=100;
[Grid.Nx,Grid.Ny,Grid.Nt] = meshgrid(1:1:nCol,1:1:nRow,T);
xPower=0.1;
tPower=1;
noisePower=1;
detConstant=1;
deterministic_mu = detConstant.*(((Grid.Nt).^tPower)./((Grid.Nx).^xPower));
beta_s = randn(nRow,nCol); % mean-zero random effect representing location specific variability common to all times
gammaTemp = randn(nT,1);
for t = 1:nT
gamma_t(:,:,t) = repmat(gammaTemp(t),nRow,nCol); % mean-zero random effect representing time specific variability common to all locations
end
var=0.1;% noise has variance = 0.1
for t=1:nT
kappa_st(:,:,t) = sqrt(var)*randn(nRow,nCol);
end
for t=1:nT
Y(:,:,t) = deterministic_mu(:,:,t) + beta_s + gamma_t(:,:,t) + kappa_st(:,:,t);
end
My questions are:
How to produce delta in the expression for Y and the difference in kappa and delta?
Help explain, through some illustration using Matlab, if I am correctly producing Y?
Please let me know if you need some more information/explanation. Thanks.
First, I rewrote your code to make it a bit more efficient. I see you generate linearly-spaced grids for x,y and t and carry out the computation for all points in this grid. This approach has severe limitations on the maximum attainable grid resolution, since the 3D grid (and all variables defined with it) can consume an awfully large amount of memory if the resolution goes up. If the model you're implementing will grow in complexity and size (it often does), I'd suggest you throw this all into a function accepting matrix/vector inputs for s and t, which will be a bit more flexible in this regard -- processing "blocks" of data that will otherwise not fit in memory will be a lot easier that way.
Then, I generated the the delta_st term with rand instead of randn since the noise should be "white". Now I'm very unsure about that last one, and I didn't have time to read through the paper you linked to -- can you tell me on what pages I can find relevant the sections for the delta_st?
Now, the code:
%# Time parameters
T = 1:1:20; % input
nT = numel(T);
%# Grid and model parameters
nRow = 100;
nCol = 100;
% noise has variance = 0.1
var = 0.1;
xPower = 0.1;
tPower = 1;
noisePower = 1;
detConstant = 1;
[Grid.Nx,Grid.Ny,Grid.Nt] = meshgrid(1:nCol,1:nRow,T);
% deterministic mean
deterministic_mu = detConstant .* Grid.Nt.^tPower ./ Grid.Nx.^xPower;
% mean-zero random effect representing location specific
% variability common to all times
beta_s = repmat(randn(nRow,nCol), [1 1 nT]);
% mean-zero random effect representing time specific
% variability common to all locations
gamma_t = bsxfun(#times, ones(nRow,nCol,nT), randn(1, 1, nT));
% mean zero random effect capturing the spatio-temporal
% interaction not found in the larger-scale deterministic mu
kappa_st = sqrt(var)*randn(nRow,nCol,nT);
% mean zero random effect representing the micro-scale
% spatio-temporal variability that is modelled by white
% noise (i.i.d. at different time steps) in Ds·Dt
delta_st = noisePower * (rand(nRow,nCol,nT)-0.5);
% Final result:
Y = deterministic_mu + beta_s + gamma_t + kappa_st + delta_st;
Your implementation samples beta, gamma and kappa as if they are white (e.g. their values at each (x,y,t) are independent). The descriptions of the terms suggest that this is not meant to be the case. It looks like delta is supposed to capture the white noise, while the other terms capture the correlations over their respective domains. e.g. there is a non-zero correlation between gamma(t_1) and gamma(t_1+1).
If you wish to model gamma as a stationary Gaussian Markov process with variance var_g and correlation cor_g between gamma(t) and gamma(t+1), you can use something like
gamma_t = nan( nT, 1 );
gamma_t(1) = sqrt(var_g)*randn();
K_g = cor_g/var_g;
K_w = sqrt( (1-K_g^2)*var_g );
for t = 2:nT,
gamma_t(t) = K_g*gamma_t(t-1) + K_w*randn();
end
gamma_t = reshape( gamma_t, [ 1 1 nT ] );
The formulas I've used for gains K_g and K_w in the above code (and the initialization of gamma_t(1)) produce the desired stationary variance \sigma^2_0 and one-step covariance \sigma^2_1:
Note that the implementation above assumes that later you will sum the terms using bsxfun to do the "repmat" for you:
Y = bsxfun( #plus, deterministic_mu + kappa_st + delta_st, beta_s );
Y = bsxfun( #plus, Y, gamma_t );
Note that I haven't tested the above code, so you should confirm with sampling that it does actually produce a zero noise process of the specified variance and covariance between adjacent samples. To sample beta the same procedure can be extended into two dimensions, but the principles are essentially the same. I suspect kappa should be similarly modeled as a Markov Gaussian Process, but in all three dimensions and with a lower variance to represent higher-order effects not captured in mu, beta and gamma.
Delta is supposed to be zero mean stationary white noise. Assuming it to be Gaussian with variance noisePower one would sample it using
delta_st = sqrt(noisePower)*randn( [ nRows nCols nT ] );