I start studying Lisp and I find a code on the book as example but I do not understand what is it for. Are you able to help me understanding that? I don't know if it is the right place to do it. Thanks everyone
(defun compress (l1)
(cond ((null (cdr l1)) '())
(t (accumula (car l1) 1 (cdr l1)))))
(defun accumula (val acc lst)
(cond ((null lst) (cons (comp-list val acc) nil))
((eq val (car lst)) (accumula val (1+ acc) (cdr lst)))
(t (cons (comp-list val acc) (accumula (car lst) 1 (cdr lst))))))
(defun comp-list (val acc)
(if (> acc 1) (list acc val) val))
It's a compression function, of the Run Length Encoding variety.
(compress '(3 3 4 3 3 2 1 1 1 1 0))
will yield
((2 3) 4 (2 3) 2 (4 1) 0)
where the first number in each sublist is the number of times the second number repeats in the original sequence.
It doesn't look like much from the example, but for long sequences where numbers repeat a lot, you can get significant savings in storage costs.
This is an answer to problem 13 in The 99 Lisp problems (L99). It has a bug:
(compress '(a))
; ==> nil
The correct result would have been (a).
Related
I just started to learn Common Lisp and this is my first functional programming language.
I am trying to learn about iterating through lists. I wrote these two functions:
(defun reverseList (liste)
(defvar reversedList(list))
(loop for i downfrom (-(length liste)1) to 0 do
(setf reversedList (append reversedList (list(nth i liste)))))
reversedList ;return
)
(defun countAppearance(liste element)
(defvar count 0)
(loop for i from 0 to (-(length liste) 1)do
(if (= (nth i liste) element)
(setf count (+ count 1))))
count
)
Both work fine for a regular list(ex: (1 3 5 7 3 9) but I want them to work for nested lists too.
Examples:
countAppearance - Input: (1 (3 5) (3 7 8) 2) 3 -> Expected output:2
reverseList - Input: (1 (2 3)) -> Expected output: ((3 2) 1)
Before I will show you solutions for nested lists, some notes about your code:
There is already function reverse for non-nested lists, so you don't have to reinvent the wheel.
=> (reverse (list 1 2 3 4 5))
(5 4 3 2 1)
If you need some local variables, use let or let*.
Lisp uses kebab-case, not camelCase, so rename reverseList as reverse-list and so on.
For (setf ... (+ ... 1)), use incf.
For iterating over list, use dolist.
Function count-occurrences can be written using recursion:
(defun count-occurrences (lst elem)
(cond ((null lst) 0)
((= (car lst) elem) (+ 1 (count-occurrences (cdr lst) elem)))
(t (count-occurrences (cdr lst) elem))))
CL-USER 3 > (count-occurrences (list 1 2 3 1 2 3) 2)
2
Or it can be written with let, dolist and incf:
(defun count-occurrences2 (lst elem)
(let ((count 0))
(dolist (e lst)
(when (= e elem) (incf count)))
count))
CL-USER 4 > (count-occurrences2 (list 1 2 3 1 2 3) 2)
2
Solutions for nested lists use recursion:
(defun deep-reverse (o)
(if (listp o)
(reverse (mapcar #'deep-reverse o))
o))
CL-USER 11 > (deep-reverse '(1 (2 3)))
((3 2) 1)
(defun deep-count (lst elem)
(cond ((null lst) 0)
((listp (car lst)) (+ (deep-count (car lst) elem)
(deep-count (cdr lst) elem)))
((= (car lst) elem) (+ 1 (deep-count (cdr lst) elem)))
(t (deep-count (cdr lst) elem))))
CL-USER 12 > (deep-count '(1 (3 5) (3 7 8) 2) 3)
2
Welcome to functional programming.
Firstly, there are some problems with the code that you have provided for us. There are some spaces missing from the code. Spaces are important because they separate one thing from another. The code (xy) is not the same as (x y).
Secondly, there is an important difference between local and global variables. So, in both cases, you want a local variable for reversedList and count. This is the tricky point. Common Lisp doesn't have global or local variables, it has dynamic and lexical variables, which aren't quite the same. For these purposes, we can use lexical variables, introduced with let. The keyword let is used for local variables in many functional languages. Also, defvar may not do what you expect, since it is way of writing a value once, which cannot be overwritten - I suspect that defparameter is what you meant.
Thirdly, looking at the reverse function, loop has its own way of gathering results into a list called collect. This would be a cleaner solution.
(defun my-reverse (lst)
(loop for x from (1- (length lst)) downto 0 collect (nth x lst)))
It can also be done in a tail recursive way.
(defun my-reverse-tail (lst &optional (result '()))
(if lst
(my-reverse-tail (rest lst) (cons (first lst) result))
result))
To get it to work with nested lists, before you collect or cons each value, you need to check if it is a list, using listp. If it is not a list, just add it onto the result. If it is a list, add on instead a call to your reverse function on the item.
Loop also has functionality to count items.
I am trying to produce the product of the even numbers in a given list.
I am trying to replicate the following example:
Example:
(product-even-numbers '(2 1 6 3 5))
==> 12
This is my version of the definition for product-even-numbers:
(define (product-even-numbers lst)
(define/match (recurse lst accumulator)
;; A _ pattern matches any syntax object
[(_ _) (* car (recurse cdr))])
(recurse lst 1))
I am getting the following error:
(product-even-numbers '(2 1 6 3 5))
. . recurse: arity mismatch;
the expected number of arguments does not match the given number
expected: 2
given: 1
arguments...:
I understand that i am missing the second argument, but I do not know what the second argument is supposed to be.
Why are you using pattern matching? this would be easier to understand without it, and first of all you need to get the recursion and the logic right:
(define (product-even-numbers lst)
(define (recurse lst acc)
(cond ((null? lst) acc)
((even? (car lst)) (recurse (cdr lst) (* (car lst) acc)))
(else (recurse (cdr lst) acc))))
(recurse lst 1))
In this case, it's clear that the second argument is the accumulated product we have so far. And we need to consider three cases: empty list, even element, odd element. For example:
(product-even-numbers '(2 1 6 3 5))
=> 12
(define (product-even-numbers lst)
(local [(define tmp (foldr * 1 (filter even? lst)))]
(if (= 1 tmp) 'nothing tmp)))
If output 1 means no any even number.
(define (product-even-numbers2 lst)
(foldr * 1 (filter even? lst))) ; or use (apply * (filter even? lst))
I have a series of expressions to convert from postfix to prefix and I thought that I would try to write a program to do it for me in DrRacket. I am getting stuck with some of the more complex ones such as (10 (1 2 3 +) ^).
I have the very simple case down for (1 2 \*) → (\* 1 2). I have set these expressions up as a list and I know that you have to use cdr/car and recursion to do it but that is where I get stuck.
My inputs will be something along the lines of '(1 2 +).
I have for simple things such as '(1 2 +):
(define ans '())
(define (post-pre lst)
(set! ans (list (last lst) (first lst) (second lst))))
For the more complex stuff I have this (which fails to work correctly):
(define ans '())
(define (post-pre-comp lst)
(cond [(pair? (car lst)) (post-pre-comp (car lst))]
[(pair? (cdr lst)) (post-pre-comp (cdr lst))]
[else (set! ans (list (last lst) (first lst) (second lst)))]))
Obviously I am getting tripped up because (cdr lst) will return a pair most of the time. I'm guessing my structure of the else statement is wrong and I need it to be cons instead of list, but I'm not sure how to get that to work properly in this case.
Were you thinking of something like this?
(define (pp sxp)
(cond
((null? sxp) sxp)
((list? sxp) (let-values (((args op) (split-at-right sxp 1)))
(cons (car op) (map pp args))))
(else sxp)))
then
> (pp '(1 2 *))
'(* 1 2)
> (pp '(10 (1 2 3 +) ^))
'(^ 10 (+ 1 2 3))
Try something like this:
(define (postfix->prefix expr)
(cond
[(and (list? expr) (not (null? expr)))
(define op (last expr))
(define args (drop-right expr 1))
(cons op (map postfix->prefix args))]
[else expr]))
This operates on the structure recursively by using map to call itself on the arguments to each call.
I am a LISP newbie.
To get the running sum of a list, I am writing like --
(setf sum 0.0)
(mapcar #'(lambda(x)
(setf sum (+ sum x)) sum) values))
For example, if you give '(1 2 3 4) as input, the above code returns '(1 3 6 10) as output and so forth.
Is it possible to do the same thing (in a more elegant way) without using the global variable sum ?
(loop for x in '(1 2 3 4) sum x into y collect y)
scanl is a oneliner:
(defun scanl (f init xs)
(loop for x in xs collect (setf init (funcall f init x))))
You could use loop, like this:
(defun running-sum (xs)
(loop with sum = 0
for x in xs
collect (setf sum (+ sum x))))
(running-sum '(1 2 3 4))
It's fundamentally the same thing, but it uses a local variable instead of a global one, and might be more clear.
Alternatively, you could define a recursive function, and a wrapper function:
(defun running-sum-recursive (xs)
(running-sum-recursive2 0 xs))
(defun running-sum-recursive2 (sum xs)
(if (eq xs nil)
nil
(let ((new-sum (+ sum (car xs))))
(cons new-sum (running-sum-recursive2 new-sum (cdr xs))))))
(running-sum-recursive '(1 2 3 4))
However this seems needlessly complicated to me when loop is available.
Note that in Haskell, you could do a running sum like this:
runningSum xs = scanl1 (+) xs
runningSum [1, 2, 3, 4]
The key here is the scanl1 function. It's possible that something similar exists in Lisp (and we've very nearly written it twice now), but I haven't used Lisp in a while.
Edit: After some searching, I don't think Common Lisp includes anything quite like scanl or scanl1, so here they are:
(defun scanl (f val xs)
(loop for x in xs
collect (setf val (funcall f val x))))
(defun scanl1 (f xs)
(cons (car xs)
(scanl f (car xs) (cdr xs))))
(scanl1 #'+ '(1 2 3 4))
Edit: Thanks to huaiyuan's answer for a suggestion about how the loops could be shortened.
Or you could use higher-order functions
(define (running-sum ls)
(cdr (reverse (foldl (lambda (y xs) (cons (+ (car xs) y) xs)) '(0) ls))))
Haskell does have a rich inventory of functions for list recursion, but we've got reduce at least. Here is an elementary (i. e. without the loop magic) functional solution:
(defun running-sum (lst)
(reverse (reduce (lambda (acc x)
(cons (+ (first acc) x) acc))
(rest lst)
:initial-value (list (first lst)))))
I'm using the head of the original list as the initial value and walk through the rest of the list adding sums at the head (because it's natural to add at the head), finally reversing the list thus obtained.
One can use reduce in most cases when there's a need to traverse a sequence accumulating a value.
Here is an elementary iterative solution using the push-nreverse idiom:
(defun running-sum (lst)
(let ((sums (list (first lst))))
(dolist (x (rest lst))
(push (+ x (first sums)) sums))
(nreverse sums)))
In Scheme I would calculate the sum of the list recursively using an accumulator. Like so:
; Computes a list of intermediary results of list summation
(define list-sum
(lambda (l)
(letrec ((recsum (lambda (lst acc acclst)
(if (pair? lst)
(recsum (cdr lst) (+ acc (car lst)) (cons acc acclst))
(cons acc acclst)))))
(recsum (cdr l) (car l) '()))))
Output:
> (list-sum '(1 2 3 4))
(10 6 3 1)
> (list-sum '(2 4 6 8 10))
(30 20 12 6 2)
>
The trick to recurse over a list is to take the first element/car off each time and pass the rest/cdr. You can keep intermediary results by using an extra parameter (called an accumulator) and pass the sum in that. I've used two accumulators above: one for the last sum and one for a list of all previous sums.
I've never done anything in LISP, so I can't tell if this translates directly to your dialect(?), but it's conceptually simple and I'm sure it's doable in LISP as well.
Do ask if something is not immediately clear. It's been a while since I've used this family of languages :)
Given a list, how would I select a new list, containing a slice of the original list (Given offset and number of elements) ?
EDIT:
Good suggestions so far. Isn't there something specified in one of the SRFI's? This appears to be a very fundamental thing, so I'm surprised that I need to implement it in user-land.
Strangely, slice is not provided with SRFI-1 but you can make it shorter by using SRFI-1's take and drop:
(define (slice l offset n)
(take (drop l offset) n))
I thought that one of the extensions I've used with Scheme, like the PLT Scheme library or Swindle, would have this built-in, but it doesn't seem to be the case. It's not even defined in the new R6RS libraries.
The following code will do what you want:
(define get-n-items
(lambda (lst num)
(if (> num 0)
(cons (car lst) (get-n-items (cdr lst) (- num 1)))
'()))) ;'
(define slice
(lambda (lst start count)
(if (> start 1)
(slice (cdr lst) (- start 1) count)
(get-n-items lst count))))
Example:
> (define l '(2 3 4 5 6 7 8 9)) ;'
()
> l
(2 3 4 5 6 7 8 9)
> (slice l 2 4)
(3 4 5 6)
>
You can try this function:
subseq sequence start &optional end
The start parameter is your offset. The end parameter can be easily turned into the number of elements to grab by simply adding start + number-of-elements.
A small bonus is that subseq works on all sequences, this includes not only lists but also string and vectors.
Edit: It seems that not all lisp implementations have subseq, though it will do the job just fine if you have it.
(define (sublist list start number)
(cond ((> start 0) (sublist (cdr list) (- start 1) number))
((> number 0) (cons (car list)
(sublist (cdr list) 0 (- number 1))))
(else '())))
Try something like this:
(define (slice l offset length)
(if (null? l)
l
(if (> offset 0)
(slice (cdr l) (- offset 1) length)
(if (> length 0)
(cons (car l) (slice (cdr l) 0 (- length 1)))
'()))))
Here's my implementation of slice that uses a proper tail call
(define (slice a b xs (ys null))
(cond ((> a 0) (slice (- a 1) b (cdr xs) ys))
((> b 0) (slice a (- b 1) (cdr xs) (cons (car xs) ys)))
(else (reverse ys))))
(slice 0 3 '(A B C D E F G)) ;=> '(A B C)
(slice 2 4 '(A B C D E F G)) ;=> '(C D E F)