LISP: how to get running sum of a list? (without a global variable) - lisp

I am a LISP newbie.
To get the running sum of a list, I am writing like --
(setf sum 0.0)
(mapcar #'(lambda(x)
(setf sum (+ sum x)) sum) values))
For example, if you give '(1 2 3 4) as input, the above code returns '(1 3 6 10) as output and so forth.
Is it possible to do the same thing (in a more elegant way) without using the global variable sum ?

(loop for x in '(1 2 3 4) sum x into y collect y)
scanl is a oneliner:
(defun scanl (f init xs)
(loop for x in xs collect (setf init (funcall f init x))))

You could use loop, like this:
(defun running-sum (xs)
(loop with sum = 0
for x in xs
collect (setf sum (+ sum x))))
(running-sum '(1 2 3 4))
It's fundamentally the same thing, but it uses a local variable instead of a global one, and might be more clear.
Alternatively, you could define a recursive function, and a wrapper function:
(defun running-sum-recursive (xs)
(running-sum-recursive2 0 xs))
(defun running-sum-recursive2 (sum xs)
(if (eq xs nil)
nil
(let ((new-sum (+ sum (car xs))))
(cons new-sum (running-sum-recursive2 new-sum (cdr xs))))))
(running-sum-recursive '(1 2 3 4))
However this seems needlessly complicated to me when loop is available.
Note that in Haskell, you could do a running sum like this:
runningSum xs = scanl1 (+) xs
runningSum [1, 2, 3, 4]
The key here is the scanl1 function. It's possible that something similar exists in Lisp (and we've very nearly written it twice now), but I haven't used Lisp in a while.
Edit: After some searching, I don't think Common Lisp includes anything quite like scanl or scanl1, so here they are:
(defun scanl (f val xs)
(loop for x in xs
collect (setf val (funcall f val x))))
(defun scanl1 (f xs)
(cons (car xs)
(scanl f (car xs) (cdr xs))))
(scanl1 #'+ '(1 2 3 4))
Edit: Thanks to huaiyuan's answer for a suggestion about how the loops could be shortened.

Or you could use higher-order functions
(define (running-sum ls)
(cdr (reverse (foldl (lambda (y xs) (cons (+ (car xs) y) xs)) '(0) ls))))

Haskell does have a rich inventory of functions for list recursion, but we've got reduce at least. Here is an elementary (i. e. without the loop magic) functional solution:
(defun running-sum (lst)
(reverse (reduce (lambda (acc x)
(cons (+ (first acc) x) acc))
(rest lst)
:initial-value (list (first lst)))))
I'm using the head of the original list as the initial value and walk through the rest of the list adding sums at the head (because it's natural to add at the head), finally reversing the list thus obtained.
One can use reduce in most cases when there's a need to traverse a sequence accumulating a value.
Here is an elementary iterative solution using the push-nreverse idiom:
(defun running-sum (lst)
(let ((sums (list (first lst))))
(dolist (x (rest lst))
(push (+ x (first sums)) sums))
(nreverse sums)))

In Scheme I would calculate the sum of the list recursively using an accumulator. Like so:
; Computes a list of intermediary results of list summation
(define list-sum
(lambda (l)
(letrec ((recsum (lambda (lst acc acclst)
(if (pair? lst)
(recsum (cdr lst) (+ acc (car lst)) (cons acc acclst))
(cons acc acclst)))))
(recsum (cdr l) (car l) '()))))
Output:
> (list-sum '(1 2 3 4))
(10 6 3 1)
> (list-sum '(2 4 6 8 10))
(30 20 12 6 2)
>
The trick to recurse over a list is to take the first element/car off each time and pass the rest/cdr. You can keep intermediary results by using an extra parameter (called an accumulator) and pass the sum in that. I've used two accumulators above: one for the last sum and one for a list of all previous sums.
I've never done anything in LISP, so I can't tell if this translates directly to your dialect(?), but it's conceptually simple and I'm sure it's doable in LISP as well.
Do ask if something is not immediately clear. It's been a while since I've used this family of languages :)

Related

Lisp nested list iteration

I just started to learn Common Lisp and this is my first functional programming language.
I am trying to learn about iterating through lists. I wrote these two functions:
(defun reverseList (liste)
(defvar reversedList(list))
(loop for i downfrom (-(length liste)1) to 0 do
(setf reversedList (append reversedList (list(nth i liste)))))
reversedList ;return
)
(defun countAppearance(liste element)
(defvar count 0)
(loop for i from 0 to (-(length liste) 1)do
(if (= (nth i liste) element)
(setf count (+ count 1))))
count
)
Both work fine for a regular list(ex: (1 3 5 7 3 9) but I want them to work for nested lists too.
Examples:
countAppearance - Input: (1 (3 5) (3 7 8) 2) 3 -> Expected output:2
reverseList - Input: (1 (2 3)) -> Expected output: ((3 2) 1)
Before I will show you solutions for nested lists, some notes about your code:
There is already function reverse for non-nested lists, so you don't have to reinvent the wheel.
=> (reverse (list 1 2 3 4 5))
(5 4 3 2 1)
If you need some local variables, use let or let*.
Lisp uses kebab-case, not camelCase, so rename reverseList as reverse-list and so on.
For (setf ... (+ ... 1)), use incf.
For iterating over list, use dolist.
Function count-occurrences can be written using recursion:
(defun count-occurrences (lst elem)
(cond ((null lst) 0)
((= (car lst) elem) (+ 1 (count-occurrences (cdr lst) elem)))
(t (count-occurrences (cdr lst) elem))))
CL-USER 3 > (count-occurrences (list 1 2 3 1 2 3) 2)
2
Or it can be written with let, dolist and incf:
(defun count-occurrences2 (lst elem)
(let ((count 0))
(dolist (e lst)
(when (= e elem) (incf count)))
count))
CL-USER 4 > (count-occurrences2 (list 1 2 3 1 2 3) 2)
2
Solutions for nested lists use recursion:
(defun deep-reverse (o)
(if (listp o)
(reverse (mapcar #'deep-reverse o))
o))
CL-USER 11 > (deep-reverse '(1 (2 3)))
((3 2) 1)
(defun deep-count (lst elem)
(cond ((null lst) 0)
((listp (car lst)) (+ (deep-count (car lst) elem)
(deep-count (cdr lst) elem)))
((= (car lst) elem) (+ 1 (deep-count (cdr lst) elem)))
(t (deep-count (cdr lst) elem))))
CL-USER 12 > (deep-count '(1 (3 5) (3 7 8) 2) 3)
2
Welcome to functional programming.
Firstly, there are some problems with the code that you have provided for us. There are some spaces missing from the code. Spaces are important because they separate one thing from another. The code (xy) is not the same as (x y).
Secondly, there is an important difference between local and global variables. So, in both cases, you want a local variable for reversedList and count. This is the tricky point. Common Lisp doesn't have global or local variables, it has dynamic and lexical variables, which aren't quite the same. For these purposes, we can use lexical variables, introduced with let. The keyword let is used for local variables in many functional languages. Also, defvar may not do what you expect, since it is way of writing a value once, which cannot be overwritten - I suspect that defparameter is what you meant.
Thirdly, looking at the reverse function, loop has its own way of gathering results into a list called collect. This would be a cleaner solution.
(defun my-reverse (lst)
(loop for x from (1- (length lst)) downto 0 collect (nth x lst)))
It can also be done in a tail recursive way.
(defun my-reverse-tail (lst &optional (result '()))
(if lst
(my-reverse-tail (rest lst) (cons (first lst) result))
result))
To get it to work with nested lists, before you collect or cons each value, you need to check if it is a list, using listp. If it is not a list, just add it onto the result. If it is a list, add on instead a call to your reverse function on the item.
Loop also has functionality to count items.

How to use foldr in Racket to eliminate numbers in a list that are greater than any subsequent numbers

I have to write a function in Racket using foldr that will take a list of numbers and remove list elements that are larger than any subsequent numbers.
Example: (eliminate-larger (list 1 2 3 5 4)) should produce (1 2 3 4)
I can do it without using foldr or any higher-order functions but I can't figure it out with foldr. Here's what I have:
(define (eliminate-larger lst)
(filter (lambda (z) (not(equal? z null)))
(foldr (lambda (x y)
(cons (determine-larger x (rest lst)) y)) null lst))
)
(define (determine-larger value lst)
(if (equal? (filter (lambda (x) (>= x value)) lst) lst)
value
null)
)
determine-larger will take in a value and a list and return that value if it is greater than or equal to all elements in the list. If not, it returns null. Now the eliminate-larger function is trying to go through the list and pass each value to determine-larger along with a list of every number after it. If it is a "good" value it will be returned and put in the list, if it's not a null is put in the list. Then at the end the nulls are being filtered out. My problem is getting the list of numbers that follow after the current number in the foldr function. Using "rest lst" doesn't work since it's not being done recursively like that. How do I get the rest of the numbers after x in foldr?
I really hope I'm not doing your homework for you, but here goes ...
How do I get the rest of the numbers after x in foldr?
Because you're consuming the list from the right, you can structure your accumulator such that "the rest of the numbers after x" are available as its memo argument.
(define (eliminate-larger lst)
(foldr
(lambda (member memo)
(if (andmap (lambda (n) (<= member n)) memo)
(cons member memo)
memo))
'()
lst))
(eliminate-larger (list 1 2 3 5 4)) ;; (1 2 3 4)
This is admittedly a naive solution, as you're forced to traverse the entire accumulator with each iteration, but you could easily maintain a max value, in addition to your memo, and compare against that each time through.
Following works:
(define (el lst)
(define (inner x lsti)
(if(empty? lsti) (list x)
(if(<= x (apply max lsti))
(cons x lsti)
lsti)))
(foldr inner '() lst))
(el (list 1 2 3 5 4))
Output:
'(1 2 3 4)
The cond version may be preferable:
(define (el lst)
(define (inner x lsti)
(cond
[(empty? lsti) (list x)]
[(<= x (apply max lsti)) (cons x lsti)]
[else lsti] ))
(foldr inner '() lst) )

Mapcar in-place: destructively modify a list of lists

I have a list of lists: (setq xs (list (list 1 2 3) (list 4 5 6) (list 7 8 9))). I want to remove a first element from each list to get ((2 3) (5 6) (8 9)). It's easy to do it non-destructively: (mapcar 'cdr xs). But I want mutate the original list. I tried:
(mapcar (lambda (x) (setf x (cdr x))) xs)
(mapcar (lambda (x) (pop x)) xs)
But it doesn't work. How to change each list of xs variable in-place, without creating any temporary lists, as efficiently as possible?
Use MAP-INTO:
CL-USER 16 > (let ((s (list (list 1 2 3)
(list 4 5 6)
(list 7 8 9))))
(map-into s #'rest s))
((2 3) (5 6) (8 9))
#Rainer Joswig's answer is correct, use map-into. The link gives example implementation using loop macro. If you want to implement map-into from scratch, or you use Emacs Lisp, you can also do it using dotimes. In Emacs Lisp dotimes is implemented in subr.el and doesn't require CL package. This is map-into with 1 sequence to map into the result sequence:
(defun map-into (r f xs)
(dotimes (i (min (length r) (length xs)) r)
(setf (elt r i)
(funcall f (elt xs i)))))
For version with variable amount of sequences we must sprinkle our code with apply and mapcar:
(defun map-into (r f &rest xss)
(dotimes (i (apply 'min (length r) (mapcar 'length xss)) r)
(setf (elt r i)
(apply f (mapcar (lambda (s) (elt s i))
xss)))))
We see, however, that elt inside dotimes makes our algorithm work in O(n2). We can optimize it to work in O(n) by using mapl (thanks #Joshua Taylor).
(defun map-into (rs f xs)
(mapl (lambda (r x) (setf (car r) (funcall f (car x)))) rs xs))
(defun map-into (rs f &rest xss)
(mapl (lambda (r xs)
(setf (car r)
(apply f (car xs))))
rs
(apply 'mapcar 'list xss))) ;; transpose a list of lists
The reason setf doesn't work inside mapcar is that setf is a complex macro that expands into expression that can manipulate the data it mutates. In a lambda scope inside mapcar it has access only to a variable, local to this lambda, not to the sequence passed to mapcar itself, so how should it know, where to put a modified value back? That's why mapcar code in the question returns modified list of lists but doesn't mutate it in-place. Just try (macroexpand '(setf (elt xs 0) (funcall 'cdr (elt xs 0)))) and see for yourself.

How do I find the index of an element in a list in Racket?

This is trivial implement of course, but I feel there is certainly something built in to Racket that does this. Am I correct in that intuition, and if so, what is the function?
Strangely, there isn't a built-in procedure in Racket for finding the 0-based index of an element in a list (the opposite procedure does exist, it's called list-ref). However, it's not hard to implement efficiently:
(define (index-of lst ele)
(let loop ((lst lst)
(idx 0))
(cond ((empty? lst) #f)
((equal? (first lst) ele) idx)
(else (loop (rest lst) (add1 idx))))))
But there is a similar procedure in srfi/1, it's called list-index and you can get the desired effect by passing the right parameters:
(require srfi/1)
(list-index (curry equal? 3) '(1 2 3 4 5))
=> 2
(list-index (curry equal? 6) '(1 2 3 4 5))
=> #f
UPDATE
As of Racket 6.7, index-of is now part of the standard library. Enjoy!
Here's a very simple implementation:
(define (index-of l x)
(for/or ([y l] [i (in-naturals)] #:when (equal? x y)) i))
And yes, something like this should be added to the standard library, but it's just a little tricky to do so nobody got there yet.
Note, however, that it's a feature that is very rarely useful -- since lists are usually taken as a sequence that is deconstructed using only the first/rest idiom rather than directly accessing elements. More than that, if you have a use for it and you're a newbie, then my first guess will be that you're misusing lists. Given that, the addition of such a function is likely to trip such newbies by making it more accessible. (But it will still be added, eventually.)
One can also use a built-in function 'member' which gives a sublist starting with the required item or #f if item does not exist in the list. Following compares the lengths of original list and the sublist returned by member:
(define (indexof n l)
(define sl (member n l))
(if sl
(- (length l)
(length sl))
#f))
For many situations, one may want indexes of all occurrences of item in the list. One can get a list of all indexes as follows:
(define (indexes_of1 x l)
(let loop ((l l)
(ol '())
(idx 0))
(cond
[(empty? l) (reverse ol)]
[(equal? (first l) x)
(loop (rest l)
(cons idx ol)
(add1 idx))]
[else
(loop (rest l)
ol
(add1 idx))])))
For/list can also be used for this:
(define (indexes_of2 x l)
(for/list ((i l)
(n (in-naturals))
#:when (equal? i x))
n))
Testing:
(indexes_of1 'a '(a b c a d e a f g))
(indexes_of2 'a '(a b c a d e a f g))
Output:
'(0 3 6)
'(0 3 6)

Forming Lisp code to task -- related to flatten list method

I'm having issues trying to form code for a problem I want to resolve. It goes like this:
~ Goal: flatten a nested list into one number
If the object is a list, replace the list with the sum of its atoms.
With nested lists, flatten the innermost lists first and work from there.
Example:
(CONDENSE '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5))
(2 3 4 (6) (2 3 (3)) 5)
(2 3 4 (6) (8) 5)
(28)
=> 28
I've tried to implement the flatten list function for this problem and I ended up with this:
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst)))
(t (append (flatten (apply #'+ (cdr lst))))))
But it gives me errors :(
Could anyone explain to me what is wrong with my processing/code? How can I improve it?
UPDATE: JUNE 5 2012
(defun condense(lxt)
(typecase lxt
(number (abs lxt))
(list
(if (all-atoms lxt)
(calculate lxt)
(condense (mapcar #'condense lxt))))))
So here, in this code, my true intent is shown. I have a function calculate that performs a calculation based off the values in the list. It is not necessarily the same operation each time. Also, I am aware that I am returning the absolute value of the number; I did this because I couldn't find another way to return the number itself. I need to find a way to return the number if the lxt is a number. And I had it recurse two times at the bottom, because this is one way that it loops on itself infinitely until it computes a single number. NOTE: this function doesn't implement a flatten function anymore nor does it use anything from it.
Imagine you have your function already. What does it get? What must it produce?
Given an atom, what does it return? Given a simple list of atoms, what should it return?
(defun condense (x)
(typecase x
(number
; then what?
(condense-number x))
(list
; then what?
(if (all-atoms x)
(condense-list-of-atoms x) ; how to do that?
(process-further-somehow
(condense-lists-inside x))))
; what other clauses, if any, must be here?
))
What must condense-lists-inside do? According to your description, it is to condense the nested lists inside - each into a number, and leave the atoms intact. So it will leave a list of numbers. To process that further somehow, we already "have" a function, condense-list-of-atoms, right?
Now, how to implement condense-lists-inside? That's easy,
(defun condense-lists-inside (xs)
(mapcar #'dowhat xs))
Do what? Why, condense, of course! Remember, we imagine we have it already. As long as it gets what it's meant to get, it shall produce what it is designed to produce. Namely, given an atom or a list (with possibly nested lists inside), it will produce a number.
So now, fill in the blanks, and simplify. In particular, see whether you really need the all-atoms check.
edit: actually, using typecase was an unfortunate choice, as it treats NIL as LIST. We need to treat NIL differently, to return a "zero value" instead. So it's better to use the usual (cond ((null x) ...) ((numberp x) ...) ((listp x) ...) ... ) construct.
About your new code: you've erred: to process the list of atoms returned after (mapcar #'condense x), we have a function calculate that does that, no need to go so far back as to condense itself. When you substitute calculate there, it will become evident that the check for all-atoms is not needed at all; it was only a pedagogical device, to ease the development of the code. :) It is OK to make superfluous choices when we develop, if we then simplify them away, after we've achieved the goal of correctness!
But, removing the all-atoms check will break your requirement #2. The calculation will then proceed as follows
(CONDENSE '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5))
==
(calculate (mapcar #'condense '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5)))
==
(calculate (list 2 3 4 (condense '(3 1 1 1)) (condense '(2 3 (1 2))) 5))
==
(calculate (list 2 3 4 (calculate '(3 1 1 1))
(calculate (list 2 3 (calculate '(1 2)))) 5))
==
(calculate (list 2 3 4 6 (calculate '(2 3 3)) 5))
==
(calculate (list 2 3 4 6 8 5))
==
28
I.e. it'll proceed in left-to-right fashion instead of the from the deepest-nested level out. Imagining the nested list as a tree (which it is), this would "munch" on the tree from its deepest left corner up and to the right; the code with all-atoms check would proceed strictly by the levels up.
So the final simplified code is:
(defun condense (x)
(if (listp x)
(reduce #'+ (mapcar #'condense x))
(abs x)))
a remark: Looking at that last illustration of reduction sequence, a clear picture emerges - of replacing each node in the argument tree with a calculate application. That is a clear case of folding, just such that is done over a tree instead of a plain list, as reduce is.
This can be directly coded with what's known as "car-cdr recursion", replacing each cons cell with an application of a combining function f on two results of recursive calls into car and cdr components of the cell:
(defun condense (x) (reduce-tree x #'+ 0))
(defun reduce-tree (x f z)
(labels ((g (x)
(cond
((consp x) (funcall f (g (car x)) (g (cdr x))))
((numberp x) x)
((null x) z)
(T (error "not a number")))))
(g x)))
As you can see this version is highly recursive, which is not that good.
Is this homework? If so, please mark it as such. Some hints:
are you sure the 'condensation' of the empty list in nil? (maybe you should return a number?)
are you sure the condensation of one element is a list? (maybe you should return a number?)
are you sure the condensation of the last case is a list? (shouldn't you return a number)?
In short, how is your condense ever going to return 28 if all your returned values are lists?
Task: With nested lists, flatten the innermost lists first and work from there
sum
flatten lists
For sum use REDUCE, not APPLY.
For flatten lists you need a loop. Lisp already provides specialized mapping functions.
Slightly more advanced: both the sum and the flatten can be done by a call to REDUCE.
You can also write down the recursion without using a higher-order function like APPLY, REDUCE, ... That's a bit more work.
Here's added the explanation of the errors you were having, actually you were close to solving your problem, just a bit more effort and you would get it right.
; compiling (DEFUN CONDENSE ...)
; file: /tmp/file8dCll3
; in: DEFUN CONDENSE
; (T (APPEND (FLATTEN (APPLY #'+ (CDR LST)))))
;
; caught WARNING:
; The function T is undefined, and its name is reserved
; by ANSI CL so that even
; if it were defined later, the code doing so would not be portable.
;
; compilation unit finished
; Undefined function:
; T
; caught 1 WARNING condition
;STYLE-WARNING: redefining CONDENSE in DEFUN
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst)))
;.------- this is a function call, not a condition
;| (you closed the parens too early)
(t (append (flatten (apply #'+ (cdr lst))))))
;; Argument Y is not a NUMBER: (3 1 1 1)
;; [Condition of type SIMPLE-TYPE-ERROR]
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst)); .-- not a number!
;You are calling #'+ -------. |
;on something, which | '(3 4 (3 1 1 1) (2 3 (1 2)) 5)
; is not a number. | |
(t (append (flatten (apply #'+ (cdr lst)))))))
;; You probably wanted to flatten first, and then sum
(defun condense (lst)
(cond
((null lst) nil); .--- returns just the
((atom lst) (list lst)); / atom 28, you can
; .---------------------/ just remove it.
(t (append (apply #'+ (flatten lst))))))
;; Now, you are lucky that append would just return the
;; atom if it's not a list
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst))
(t (apply #'+ (flatten lst)))))
;; Again, you are lucky because (apply can take enough arguments
;; while your list is reasonably small - this will not always be
;; the case, that is why you need to use something more durable,
;; for example, reduce.
(defun condense (lst)
(cond
((null lst) nil)
((atom lst) (list lst))
(t (reduce #'+ (flatten lst)))))
;; Whoa!
(condense '(2 3 4 (3 1 1 1) (2 3 (1 2)) 5))
This is all given the flatten function actually works.
If your lisp already implements flatten and reduce functions (such as Clojure, which I will use here), you can just do something like:
user=> (defn condense [l] (reduce + 0 (flatten l)))
#'user/condense
user=> (condense [1 [2 [[3 4] 5]]])
15
user=>
Failing that, a naive implementation of those functions might be:
(defn flatten [l]
(cond (nil? l) l
(coll? l) (let [[h & t] l]
(concat (flatten h) (flatten t)))
true [l]))
and:
(defn reduce [op initial-value [h & t]]
(if (nil? t)
(op initial-value h)
(op initial-value (reduce op h t))))
But make sure to check the semantics of the particular Lisp you are using. Also, if you are implementing reduce and flatten, you may want to make them tail recursive which I didn't so as to maintain clarity.
In Common Lisp you would do something like:
(defun flatten (l)
(cond ((null l) l)
((atom l) (list l))
(t (append (flatten (car l))
(flatten (cdr l))))))
and use apply instead of reduce:
(defun condense (l) (apply #'+ (flatten l)))