Adaptive Neuro-Fuzzy Logic using Accord.NET? - neural-network

Is it possible to design a neuro fuzzy system using Accord.NET. I can't fins anything regarding neuro fuzzy systems in Accord documentation. Has anyone done this before, Is there any technique to do this?

I look at this file: https://github.com/accord-net/framework/blob/development/Sources/Accord.Fuzzy/InferenceSystem.cs
Accord.net seems to support fuzzy inference system (FIS). So now have to figure out how you want to model membership functions (MF) using parameters. Then use special neural network (NN) to model those rules such that as NN is trained MF parameters are tuned to give you best results.

Related

Feature selection for one class classification

I try to apply One Class SVM but my dataset contains too many features and I believe feature selection would improve my metrics. Are there any methods for feature selection that do not need the label of the class?
If yes and you are aware of an existing implementation please let me know
You'd probably get better answers asking this on Cross Validated instead of Stack Exchange, although since you ask for implementations I will answer your question.
Unsupervised methods exist that allow you to eliminate features without looking at the target variable. This is called unsupervised data (dimensionality) reduction. They work by looking for features that convey similar information and then either eliminate some of those features or reduce them to fewer features whilst retaining as much information as possible.
Some examples of data reduction techniques include PCA, redundancy analysis, variable clustering, and random projections, amongst others.
You don't mention which program you're working in but I am going to presume it's Python. sklearn has implementations for PCA and SparseRandomProjection. I know there is a module designed for variable clustering in Python but I have not used it and don't know how convenient it is. I don't know if there's an unsupervised implementation of redundancy analysis in Python but you could consider making your own. Depending on what you decide to do it might not be too tricky (especially if you just do correlation based).
In case you're working in R, finding versions of data reduction using PCA will be no problem. For variable clustering and redundancy analysis, great packages like Hmisc and ClustOfVar exist.
You can also read about other unsupervised data reduction techniques; you might find other methods more suitable.

Command detection with Deep Neural Networks using Kaldi without binding to a language

Did anybody see any samples how set up simple application to train dnet and then use it to recognize it a limited number of voice commands without binding to a particular language? I believe Kaldi API is quite powerful for it but there is a lack of documentation.
1) You take existing DNN model or train it yourself. You can use Tedlium experiment from Kaldi, it is free to run. It does not matter if model is for English, it will work for other languages too.
2) You extract DNN posteriors from both training keyphrases. nnet3-am-compute tool can be used for that. It takes DNN model and returns phonetic or state posteriors for every frame.
3) You implement DTW algorithm to compare DNN posteriors. This part you have to do yourself, it is not implemented in Kaldi.
Related papers describing the algorithm:
Investigating Neural Network based Query-by-Example Keyword Spotting Approach for Personalized Wake-up Word Detection in Mandarin Chinese
Query-By-Example Spoken Term Detection Using Phonetic Posteriorgram Templates

Adding Interaction Terms to MATLAB Multiple Regression

I am currently running a multiple linear regression using MATLAB's LinearModel.fit function, and I am bit confused in regards to how to properly add interaction terms to the model by hand. As I am aware, LinearModel.fit does not standardize variables on its own, so I have been doing so manually.
So far, the way I have done it has been to
Standardize the observations for each variables
Multiply corresponding standardized values from specific variables to create the interaction terms and then add these new variables to the set of regression data
Run the regression
Is this the correct way to go about doing this? Should I standardize the interaction term variables also after calculating the 'raw' terms? Any help would be greatly appreciated!
Whether or not to standardize interaction terms probably depends on what you intend to do with the model. Standardization typically does not affect model performance as much as it allows for more straightforward model interpretation as your learned coefficients will be on similar scales. I suspect whether to do this or not is largely a matter of opinion. Here is a relevant stats.stackexchange post that may help.
My intuition would be the same as how you have described your process so far.

Determine function parameters with neural network

I am currently studying a doctoral thesis in control theory. At the end of every chapter there is a simulation of a relative-with-the-subject problem. I have finished the theory,but for further understanding I would like to reproduce the simulations. The first simulation is as follows :
The solution of the problem concludes in a system of differential equations whose right hand side consists of functions with unknown parameters. The author states the following : "We will use neural networks with one hidden layer,sigmoid basis functions and 5 weights in the external layer in order to approximate every parameter of the unknown functions.More specifically, the weights of the hidden layer are selected through iterative trials and are kept stable during the simulation." And then he states the logic with which he selects the initial values of the unknown parameters and then shows the results of the simulation.
Could anyone give me a lead on where to look and what I need to know in order to solve this specific problem myself in MATLAB (since this is the environment I am most familiar with)? Because the results of a google search are chaotic since I don't really know what I'm looking for.
If you need any more info,feel free to ask!
You can try MATLAB's Neural Network Toolbox. This gives you an nice UI where you can configure the network, train it with data to find the parameter values and test for performance. No coding involved.
Or, you can program it by hand. Since you are working with one hidden layer, it should be very simple. I am sure any machine learning or neural net (NN) textbook would have one example of it. You can also look into GitHib for projects. There should be many NN projects there, in case you are looking to salvage code from existing project.
Most importantly, you should start by learning about NN, if you haven't done that already. NN with single hidden layer is easy to implement once you understand the equations for the forward and back propagation.

How do I decide which Neural Network and learning method to use in a particular case?

I am new in neural networks and I need to determine the pattern among a given set of inputs and outputs. So how do I decide which neural network to use for training or even which learning method to use? I have little idea about the pattern or relation between the given input and outputs.
Any sort of help will be appreciated. If you want me to read some stuff then it would be great if links are provided.
If any more info is needed plz say so.
Thanks.
Choosing the right neural networks is something of an art form. It's a bit difficult to give generic suggestions as the best NN for a situation will depend on the problem at hand. As with many of these problems neural netowrks may or may not be the best solution. I'd highly recommned trying out different networks and testing their performance vs a testing data set. When I did this I usually used the ANN tools though the R software package.
Also keep your mind open to other statistical learning techniques as well, things like decision trees and Support Vector Machines may be a better choice for some problems.
I'd suggest the following books:
http://www.amazon.com/Neural-Networks-Pattern-Recognition-Christopher/dp/0198538642
http://www.stats.ox.ac.uk/~ripley/PRbook/#Contents