Are Scala closures as flexible as C++ lambdas? - scala

I know the question seems a bit heretical. Indeed, having much appreciated lambdas in C++11, I was quite thrilled to learn a language which was built to support them from the beginning rather than as a contrived addition.
However, I cannot figure out how to do with Scala all I can do with C++11 lambdas.
Suppose I want to make a function which adds to a number passed as a parameter some value contained in a variable a. In C++, I can do both
int a = 5;
auto lambdaVal = [ a](int par) { return par + a; };
auto lambdaRef = [&a](int par) { return par + a; };
Now, if I change a, the second version will change its behavior; but the first will keep adding 5.
In Scala, if I do this
var a = 5
val lambdaOnly = (par:Int) => par + a
I essentially get the lambdaRef model: changing a will immediately change what the function does.
(which seems somewhat specious to me given that this time a isn't even mentioned in the declaration of the lambda, only in its code. But let it be)
Am I missing the way to obtain lambdaVal? Or do I have to first copy a to a val to be free to modify it afterwards without side effects?

The a in the function definition refers the variable a. If you want to use the current value of a when the lambda has been created, you have to copy the value like this:
val lambdaConst = {
val aNow = a
(par:Int) => par + aNow
}

Related

PureScript - Simple Multiline Computation

Consider the following JavaScript function, which performs a computation over several lines to clearly indicate the programmer's intent:
function computation(first, second) {
const a = first * first;
const b = second - 4;
const c = a + b;
return c;
}
computation(12, 3)
//143
computation(-3, 2.6)
//7.6
I have tried using do notation to solve this with PureScript but I seem to be just short of understanding some key concept. The do notation examples in the documentation only covers do notation when the value being bound is an array (https://book.purescript.org/chapter4.html#do-notation), but in my example I would like the values to be simple values of the Int or Number type.
While it is possible to perform this computation in one line, it makes the code harder to debug and does not scale to many operations.
How would the computation method be written correctly in PureScript so that...
If computation involved 1000 intermediate steps, instead of 3, the code would not suffer from excessive indenting but would be as readable as possible
Each step of the computation is on its own line, so that, for example, the code could be reviewed line by line by a supervisor, etc., for quality
You don't need the do notation. The do notation is intended for computations happening in a monad, whereas your computation is naked.
To define some intermediate values before returning result, use the let .. in construct:
computation first second =
let a = first * first
b = second - 4
c = a + b
in c
But if you really want to use do, you can do that as well: it also supports naked computations just to give you some choice. The difference is that within a do you can have multiple lets on the same level (and they work the same as one let with multiple definitions) and you don't need an in:
computation first second = do
let a = first * first -- first let
b = second - 4
let c = a + b -- second let
c -- no in

A cleaner way to pass many parameters into many functions in a script, without moving to object-oriented code structure?

I am looking for some style/best practice advice. I often find myself writing scripts which need many (several tens of) parameters to be defined at the beginning. Then these parameters are used by many functions within the script. A minimum, simplified example might look something like the following:
params.var1 = 1;
params.var2 = 10;
params.var3 = 100;
params.var4 = 1e3;
result1 = my_func1(params);
result2 = my_func2(params);
Now, I don't want to pass many inputs into every function, so am reluctant to do something like result1 = my_func1(var1,var2,var3,var4,...). Therefore, I always find myself making each variable a field of a structure (e.g. params), and then passing this structure alone into each function, as above. The structure is not modified by the functions, only the parameters are used for further calculations.
One of the functions might look like this then:
function result = my_func1(params)
var1 = params.var1;
var2 = params.var2;
var3 = params.var3;
var4 = params.var4;
result = var1.^2 + var2.^2 -var3.^3 + var4;
end
Now, because I don't want to refer to each variable within the function as params.var1, etc. (in the interest of keeping the expression for result as clear as possible), I first do all this unpacking at the beginning using var1 = params.var1.
I suppose the best thing to be doing in situations like this might be to use classes (because I have some data and also want to perform functions on that data). Are there any better ways for me to be doing this kind of thing without moving fully to object-oriented code?
I would simply leave the unpacking out. Call the struct params something shorter inside the function, to keep clutter to a minimum:
function result = my_func1(p)
result = p.var1.^2 + p.var2.^2 - p.var3.^3 + p.var4;
end
I would keep calling it params elsewhere, so you don’t have to deal with cryptic names.
You can define constant functions:
function out = var1
out = 1;
end
function out = var2
out = 10;
end
function result = my_func1
result = var1.^2 + var2.^2;
end
Based on your actual application you may pass array of numbers:
var = [var1 var2 var3 var4];
my_func1(var);
my_func1(var1,var2,var3,var4,...) in my opinion is preferred over passing struct.

loop starting from given index

Considering the following javascript, what's the best way to write this loop in coffee script, given the initial index is greater than 0:
function mixin(target, source, methods) {
for (var i = 2, l = arguments.length; i < l; i++){
var method = arguments[i];
target[method] = source[method].bind(source)
}
}
Automatic code converters suggest use a while loop like this:
mixin = (target, source, methods) ->
i = 2
l = arguments.length
while i < l
method = arguments[i]
target[method] = source[method].bind(source)
i++
Is there a cleaner way to do this?
You'd usually use a splat in CoffeeScript when defining your mixing function:
The JavaScript arguments object is a useful way to work with functions that accept variable numbers of arguments. CoffeeScript provides splats ..., both for function definition as well as invocation, making variable numbers of arguments a little bit more palatable.
So you'd say:
mixin = (target, source, methods...) ->
# splat ----------------------^^^
for method in methods
target[method] = source[method].bind(source)
and your problem goes away. The splat in the argument list will collect all the arguments after source into a methods array for you so you won't have to worry about arguments at all; the splat also makes the function's signature nice and obvious.
Use an exclusive range (triple dot, excludes the number at the highest.
for i in [2...arguments.length]
method = arguments[i]
target[method] = source[method].bind(source)
If you have 5 things in your args, this will hit indexes 2, 3 and 4.

Coding style - ordering of expressions in blocks in Scala

Since I began programming in Scala, I gravitated towards what seems to be a natural coding style in this language, which is easiest to explain with a simple example:
val a = {
def f1(p : Int) = ...
def f2(p : Int) = ...
f1(12) * f2(100)
}
As you can see, the multiplication of the values, which, if you want to understand the code, is the first operation you should want to familiarize yourself with, is not to be found until the last line. Instead, you need to read through the pieces of the puzzle first (functions f1, f2) before you can see how they're actually arranged. For me, this makes the code harder to read. How are you dealing with this problem - or maybe you don't find it a problem at all?
One interesting approach might be to use the untyped macro proposal in macro-paradise to introduce a where binding, such that:
val a = (f1(12) * f2(100)) where {
def f1(x : Int) = x + 1
def f2(x : Int) = x + 2
}
gets rewritten to your code above. As I understand it, untyped macros would allow the non-existent identifiers f1 and f2 to exist past the pre-macro typecheck. I think the rewrite should be relatively simple, and then the second typecheck would catch any problems. However, I've never actually written any macros, so it's possible there's something about this which would fail!
If it were possible, I think it would be quite a nice form to have (and rewriting would solve problems with execution order) - if I get some time I may have a stab at writing it!
Edit: I've had a go at writing this, and bits of it turn out surprisingly easy. Code is available on github. Unfortunately, the best I can do so far is:
val result = where ( f1(1) * f2(2), {
def f1(x : Int) = x + 1
def f2(x : Int) = x + 2
})
The problem is that Scala's infix operators are just method calls, and so I'd need to have something constructed on the expression (f1(1) * f2(2)) in order to invoke them. But that's the very expression which won't type properly before macro resolution, so I'm not quite sure what to do. Time for a new question, methinks!

Scala closures on wikipedia

Found the following snippet on the Closure page on wikipedia
//# Return a list of all books with at least 'threshold' copies sold.
def bestSellingBooks(threshold: Int) = bookList.filter(book => book.sales >= threshold)
//# or
def bestSellingBooks(threshold: Int) = bookList.filter(_.sales >= threshold)
Correct me if I'm wrong, but this isn't a closure? It is a function literal, an anynomous function, a lambda function, but not a closure?
Well... if you want to be technical, this is a function literal which is translated at runtime into a closure, closing the open terms (binding them to a val/var in the scope of the function literal). Also, in the context of this function literal (_.sales >= threshold), threshold is a free variable, as the function literal itself doesn't give it any meaning. By itself, _.sales >= threshold is an open term At runtime, it is bound to the local variable of the function, each time the function is called.
Take this function for example, generating closures:
def makeIncrementer(inc: Int): (Int => Int) = (x: Int) => x + inc
At runtime, the following code produces 3 closures. It's also interesting to note that b and c are not the same closure (b == c gives false).
val a = makeIncrementer(10)
val b = makeIncrementer(20)
val c = makeIncrementer(20)
I still think the example given on wikipedia is a good one, albeit not quite covering the whole story. It's quite hard giving an example of actual closures by the strictest definition without actually a memory dump of a program running. It's the same with the class-object relation. You usually give an example of an object by defining a class Foo { ... and then instantiating it with val f = new Foo, saying that f is the object.
-- Flaviu Cipcigan
Notes:
Reference: Programming in Scala, Martin Odersky, Lex Spoon, Bill Venners
Code compiled with Scala version 2.7.5.final running on Java 1.6.0_14.
I'm not entirely sure, but I think you're right. Doesn't a closure require state (I guess free variables...)?
Or maybe the bookList is the free variable?
As far as I understand, this is a closure that contains a formal parameter, threshold and context variable, bookList, from the enclosing scope. So the return value(List[Any]) of the function may change while applying the filter predicate function. It is varying based on the elements of List(bookList) variable from the context.