How is init() relevant in Swift protocol? - swift

Protocols in Swift can declare the init() method in their definition. However, I can't think of any use case where this solves any problem other than forcing the conforming classes to define the init() as in the protocol. We can call the declared methods on the protocol type but init on protocol cannot be used to instantiate its object, which is its only purpose.
What problem does declaring init() method in a protocol solve?

I think the real utility comes when it's used as a constraint in a generic class o function. This is real code from one of my projects.
I declare a protocol with a init:
protocol JSONCreatable {
init(fromJson json: JSON)
}
Then, in a generic function where I return a class that conforms to that protocol:
import SwiftyJSON
extension JSON {
func asObject<T>() -> T? where T: JSONCreatable {
if isEmpty {
return nil
}
return T(fromJson: self)
}
func asArray<T>() -> [T] where T: JSONCreatable {
return array?.map{ json in T(fromJson: json) } ?? []
}
}
This allows me to do things like this:
let user: User = json["user"].asObject()
let results: [Element] = json["elements"].asArray()

It forces class to have init(data: data) from some data, example:
protocol JSONable {
init(data: JSON)
}
forces all classes, that are JSONable to have an initialiser from JSON, so you are always sure, that you can create an instance from JSON.

It's commonly used in order to allow for protocol extensions and generic placeholders constrained to protocols to call the initialiser on the given concrete type that conforms to the protocol. For example, consider RangeReplaceableCollection's default implementation of init<S : Sequence>(_ elements: S):
extension RangeReplaceableCollection {
// ...
/// Creates a new instance of a collection containing the elements of a
/// sequence.
///
/// - Parameter elements: The sequence of elements for the new collection.
public init<S : Sequence>(_ elements: S) where S.Iterator.Element == Iterator.Element {
self.init()
append(contentsOf: elements)
}
// ...
}
Without init() being defined as a protocol requirement of RangeReplaceableCollection, there's no way for the extension to know that we can call init() in order to create a new instance of the conforming type.
But it can also be used directly outside of generics and extensions – for example, it can be used to construct a new instance represented by a given existential metatype (the metatype of 'some concrete type that conforms to a protocol'):
protocol P {
init()
}
struct S : P {
init() {}
}
let s: P = S()
let s1 = type(of: s).init() // creates a new instance of S, statically typed as P.
In this example:
type(of: s) returns the dynamic type of s as P.Type (an existential metatype), as s is statically typed as P. Remember that type(of:) is a (T) -> T.Type operation.
init() constructs a new instance of the underlying concrete type, in this case S.
The new instance is statically typed as P (i.e boxed in an existential container).

Related

Cannot assign value of type CustomViewcontroller<FirstModel> to type CustomViewcontroller<SecondModel> [duplicate]

I'm using Signals library.
Let's say I defined BaseProtocol protocol and ChildClass which conforms BaseProtocol.
protocol BaseProtocol {}
class ChildClass: BaseProtocol {}
Now I want to store signals like:
var signals: Array<Signal<BaseProtocol>> = []
let signalOfChild = Signal<ChildClass>()
signals.append(signalOfChild)
I get error:
But I can write next lines without any compiler error:
var arrays = Array<Array<BaseProtocol>>()
let arrayOfChild = Array<ChildClass>()
arrays.append(arrayOfChild)
So, what the difference between generic Swift Array and generic Signal?
The difference is that Array (and Set and Dictionary) get special treatment from the compiler, allowing for covariance (I go into this in slightly more detail in this Q&A).
However arbitrary generic types are invariant, meaning that X<T> is a completely unrelated type to X<U> if T != U – any other typing relation between T and U (such as subtyping) is irrelevant. Applied to your case, Signal<ChildClass> and Signal<BaseProtocol> are unrelated types, even though ChildClass is a subtype of BaseProtocol (see also this Q&A).
One reason for this is it would completely break generic reference types that define contravariant things (such as function parameters and property setters) with respect to T.
For example, if you had implemented Signal as:
class Signal<T> {
var t: T
init(t: T) {
self.t = t
}
}
If you were able to say:
let signalInt = Signal(t: 5)
let signalAny: Signal<Any> = signalInt
you could then say:
signalAny.t = "wassup" // assigning a String to a Signal<Int>'s `t` property.
which is completely wrong, as you cannot assign a String to an Int property.
The reason why this kind of thing is safe for Array is that it's a value type – thus when you do:
let intArray = [2, 3, 4]
var anyArray : [Any] = intArray
anyArray.append("wassup")
there are no problems, as anyArray is a copy of intArray – thus the contravariance of append(_:) is not a problem.
However, this cannot be applied to arbitrary generic value types, as value types can contain any number of generic reference types, which leads us back down the dangerous road of allowing an illegal operation for generic reference types that define contravariant things.
As Rob says in his answer, the solution for reference types, if you need to maintain a reference to the same underlying instance, is to use a type-eraser.
If we consider the example:
protocol BaseProtocol {}
class ChildClass: BaseProtocol {}
class AnotherChild : BaseProtocol {}
class Signal<T> {
var t: T
init(t: T) {
self.t = t
}
}
let childSignal = Signal(t: ChildClass())
let anotherSignal = Signal(t: AnotherChild())
A type-eraser that wraps any Signal<T> instance where T conforms to BaseProtocol could look like this:
struct AnyBaseProtocolSignal {
private let _t: () -> BaseProtocol
var t: BaseProtocol { return _t() }
init<T : BaseProtocol>(_ base: Signal<T>) {
_t = { base.t }
}
}
// ...
let signals = [AnyBaseProtocolSignal(childSignal), AnyBaseProtocolSignal(anotherSignal)]
This now lets us talk in terms of heterogenous types of Signal where the T is some type that conforms to BaseProtocol.
However one problem with this wrapper is that we're restricted to talking in terms of BaseProtocol. What if we had AnotherProtocol and wanted a type-eraser for Signal instances where T conforms to AnotherProtocol?
One solution to this is to pass a transform function to the type-eraser, allowing us to perform an arbitrary upcast.
struct AnySignal<T> {
private let _t: () -> T
var t: T { return _t() }
init<U>(_ base: Signal<U>, transform: #escaping (U) -> T) {
_t = { transform(base.t) }
}
}
Now we can talk in terms of heterogenous types of Signal where T is some type that's convertible to some U, which is specified at the creation of the type-eraser.
let signals: [AnySignal<BaseProtocol>] = [
AnySignal(childSignal, transform: { $0 }),
AnySignal(anotherSignal, transform: { $0 })
// or AnySignal(childSignal, transform: { $0 as BaseProtocol })
// to be explicit.
]
However, the passing of the same transform function to each initialiser is a little unwieldy.
In Swift 3.1 (available with Xcode 8.3 beta), you can lift this burden from the caller by defining your own initialiser specifically for BaseProtocol in an extension:
extension AnySignal where T == BaseProtocol {
init<U : BaseProtocol>(_ base: Signal<U>) {
self.init(base, transform: { $0 })
}
}
(and repeat for any other protocol types you want to convert to)
Now you can just say:
let signals: [AnySignal<BaseProtocol>] = [
AnySignal(childSignal),
AnySignal(anotherSignal)
]
(You can actually remove the explicit type annotation for the array here, and the compiler will infer it to be [AnySignal<BaseProtocol>] – but if you're going to allow for more convenience initialisers, I would keep it explicit)
The solution for value types, or reference types where you want to specifically create a new instance, to is perform a conversion from Signal<T> (where T conforms to BaseProtocol) to Signal<BaseProtocol>.
In Swift 3.1, you can do this by defining a (convenience) initialiser in an extension for Signal types where T == BaseProtocol:
extension Signal where T == BaseProtocol {
convenience init<T : BaseProtocol>(other: Signal<T>) {
self.init(t: other.t)
}
}
// ...
let signals: [Signal<BaseProtocol>] = [
Signal(other: childSignal),
Signal(other: anotherSignal)
]
Pre Swift 3.1, this can be achieved with an instance method:
extension Signal where T : BaseProtocol {
func asBaseProtocol() -> Signal<BaseProtocol> {
return Signal<BaseProtocol>(t: t)
}
}
// ...
let signals: [Signal<BaseProtocol>] = [
childSignal.asBaseProtocol(),
anotherSignal.asBaseProtocol()
]
The procedure in both cases would be similar for a struct.

cast generic type to the type with Any as the type parameter [duplicate]

I'm using Signals library.
Let's say I defined BaseProtocol protocol and ChildClass which conforms BaseProtocol.
protocol BaseProtocol {}
class ChildClass: BaseProtocol {}
Now I want to store signals like:
var signals: Array<Signal<BaseProtocol>> = []
let signalOfChild = Signal<ChildClass>()
signals.append(signalOfChild)
I get error:
But I can write next lines without any compiler error:
var arrays = Array<Array<BaseProtocol>>()
let arrayOfChild = Array<ChildClass>()
arrays.append(arrayOfChild)
So, what the difference between generic Swift Array and generic Signal?
The difference is that Array (and Set and Dictionary) get special treatment from the compiler, allowing for covariance (I go into this in slightly more detail in this Q&A).
However arbitrary generic types are invariant, meaning that X<T> is a completely unrelated type to X<U> if T != U – any other typing relation between T and U (such as subtyping) is irrelevant. Applied to your case, Signal<ChildClass> and Signal<BaseProtocol> are unrelated types, even though ChildClass is a subtype of BaseProtocol (see also this Q&A).
One reason for this is it would completely break generic reference types that define contravariant things (such as function parameters and property setters) with respect to T.
For example, if you had implemented Signal as:
class Signal<T> {
var t: T
init(t: T) {
self.t = t
}
}
If you were able to say:
let signalInt = Signal(t: 5)
let signalAny: Signal<Any> = signalInt
you could then say:
signalAny.t = "wassup" // assigning a String to a Signal<Int>'s `t` property.
which is completely wrong, as you cannot assign a String to an Int property.
The reason why this kind of thing is safe for Array is that it's a value type – thus when you do:
let intArray = [2, 3, 4]
var anyArray : [Any] = intArray
anyArray.append("wassup")
there are no problems, as anyArray is a copy of intArray – thus the contravariance of append(_:) is not a problem.
However, this cannot be applied to arbitrary generic value types, as value types can contain any number of generic reference types, which leads us back down the dangerous road of allowing an illegal operation for generic reference types that define contravariant things.
As Rob says in his answer, the solution for reference types, if you need to maintain a reference to the same underlying instance, is to use a type-eraser.
If we consider the example:
protocol BaseProtocol {}
class ChildClass: BaseProtocol {}
class AnotherChild : BaseProtocol {}
class Signal<T> {
var t: T
init(t: T) {
self.t = t
}
}
let childSignal = Signal(t: ChildClass())
let anotherSignal = Signal(t: AnotherChild())
A type-eraser that wraps any Signal<T> instance where T conforms to BaseProtocol could look like this:
struct AnyBaseProtocolSignal {
private let _t: () -> BaseProtocol
var t: BaseProtocol { return _t() }
init<T : BaseProtocol>(_ base: Signal<T>) {
_t = { base.t }
}
}
// ...
let signals = [AnyBaseProtocolSignal(childSignal), AnyBaseProtocolSignal(anotherSignal)]
This now lets us talk in terms of heterogenous types of Signal where the T is some type that conforms to BaseProtocol.
However one problem with this wrapper is that we're restricted to talking in terms of BaseProtocol. What if we had AnotherProtocol and wanted a type-eraser for Signal instances where T conforms to AnotherProtocol?
One solution to this is to pass a transform function to the type-eraser, allowing us to perform an arbitrary upcast.
struct AnySignal<T> {
private let _t: () -> T
var t: T { return _t() }
init<U>(_ base: Signal<U>, transform: #escaping (U) -> T) {
_t = { transform(base.t) }
}
}
Now we can talk in terms of heterogenous types of Signal where T is some type that's convertible to some U, which is specified at the creation of the type-eraser.
let signals: [AnySignal<BaseProtocol>] = [
AnySignal(childSignal, transform: { $0 }),
AnySignal(anotherSignal, transform: { $0 })
// or AnySignal(childSignal, transform: { $0 as BaseProtocol })
// to be explicit.
]
However, the passing of the same transform function to each initialiser is a little unwieldy.
In Swift 3.1 (available with Xcode 8.3 beta), you can lift this burden from the caller by defining your own initialiser specifically for BaseProtocol in an extension:
extension AnySignal where T == BaseProtocol {
init<U : BaseProtocol>(_ base: Signal<U>) {
self.init(base, transform: { $0 })
}
}
(and repeat for any other protocol types you want to convert to)
Now you can just say:
let signals: [AnySignal<BaseProtocol>] = [
AnySignal(childSignal),
AnySignal(anotherSignal)
]
(You can actually remove the explicit type annotation for the array here, and the compiler will infer it to be [AnySignal<BaseProtocol>] – but if you're going to allow for more convenience initialisers, I would keep it explicit)
The solution for value types, or reference types where you want to specifically create a new instance, to is perform a conversion from Signal<T> (where T conforms to BaseProtocol) to Signal<BaseProtocol>.
In Swift 3.1, you can do this by defining a (convenience) initialiser in an extension for Signal types where T == BaseProtocol:
extension Signal where T == BaseProtocol {
convenience init<T : BaseProtocol>(other: Signal<T>) {
self.init(t: other.t)
}
}
// ...
let signals: [Signal<BaseProtocol>] = [
Signal(other: childSignal),
Signal(other: anotherSignal)
]
Pre Swift 3.1, this can be achieved with an instance method:
extension Signal where T : BaseProtocol {
func asBaseProtocol() -> Signal<BaseProtocol> {
return Signal<BaseProtocol>(t: t)
}
}
// ...
let signals: [Signal<BaseProtocol>] = [
childSignal.asBaseProtocol(),
anotherSignal.asBaseProtocol()
]
The procedure in both cases would be similar for a struct.

Function that takes a protocol and a conforming class (!) instance as parameters

I am trying to figure out how to define a function which takes the following
two parameters:
A protocol.
An instance of a class (a reference type) conforming to that protocol.
For example, given
protocol P { }
class C : P { } // Class, conforming to P
class D { } // Class, not conforming to P
struct E: P { } // Struct, conforming to P
this should compile:
register(proto: P.self, obj: C()) // (1)
but these should not compile:
register(proto: P.self, obj: D()) // (2) D does not conform to P
register(proto: P.self, obj: E()) // (3) E is not a class
It is easy if we drop the condition that the second parameter is a class instance:
func register<T>(proto: T.Type, obj: T) {
// ...
}
but this would accept the struct (value type) in (3) as well.
This looked promising and compiles
func register<T: AnyObject>(proto: T.Type, obj: T) {
// ...
}
but then none of (1), (2), (3) compile anymore, e.g.
register(proto: P.self, obj: C()) // (1)
// error: cannot invoke 'register' with an argument list of type '(P.Protocol, obj: C)'
I assume that the reason for the compiler error is the same as in
Protocol doesn't conform to itself?.
Another failed attempt is
func register<T>(proto: T.Type, obj: protocol<T, AnyObject>) { }
// error: non-protocol type 'T' cannot be used within 'protocol<...>'
A viable alternative would be a function which takes as parameters
A class protocol.
An instance of a type conforming to that protocol.
Here the problem is how to restrict the first parameter such that only
class protocols are accepted.
Background: I recently stumbled over the
SwiftNotificationCenter
project which implements a protocol-oriented, type safe notification mechanism.
It has a
register
method which looks like this:
public class NotificationCenter {
public static func register<T>(protocolType: T.Type, observer: T) {
guard let object = observer as? AnyObject else {
fatalError("expecting reference type but found value type: \(observer)")
}
// ...
}
// ...
}
The observers are then stored as weak references, and that's why they
must be reference types, i.e. instances of a class.
However, that is checked only at runtime, and I wonder how to make it a compile-time check.
Am I missing something simple/obvious?
You can't do what you are trying to do directly. It has nothing to do with reference types, it's because any constraints make T existential so it is impossible to satisfy them at the call site when you're referencing the protocol's metatype P.self: P.Protocol and an adopter C. There is a special case when T is unconstrained that allows it to work in the first place.
By far the more common case is to constrain T: P and require P: class because just about the only thing you can do with an arbitrary protocol's metatype is convert the name to a string. It happens to be useful in this narrow case but that's it; the signature might as well be register<T>(proto: Any.Type, obj: T) for all the good it will do.
In theory Swift could support constraining to metatypes, ala register<T: AnyObject, U: AnyProtocol where T.Type: U>(proto: U, obj: T) but I doubt it would be useful in many scenarios.

Swift: Any Kind of sequence as a function parameter

I have created my custom sequence type and I want the function to accept any kind of sequence as a parameter. (I want to use both sets, and my sequence types on it)
Something like this:
private func _addToCurrentTileset(tilesToAdd tiles: SequenceType)
Is there any way how I can do it?
It seems relatively straightforward, but I can't figure it out somehow. Swift toolchain tells me:
Protocol 'SequenceType' can only be used as a generic constraint because it has Self or associated type requirements, and I don't know how to create a protocol that will conform to SequenceType and the Self requirement from it.
I can eliminate the associatedType requirement with, but not Self:
protocol EnumerableTileSequence: SequenceType {
associatedtype GeneratorType = geoBingAnCore.Generator
associatedtype SubSequence: SequenceType = EnumerableTileSequence
}
Now if say I can eliminate self requirement, then already with such protocol definition other collectionType entities like arrays, sets won't conform to it.
Reference:
my custom sequences are all subclasses of enumerator type defined as:
public class Enumerator<T> {
public func nextObject() -> T? {
RequiresConcreteImplementation()
}
}
extension Enumerator {
public var allObjects: [T] {
return Array(self)
}
}
extension Enumerator: SequenceType {
public func generate() -> Generator<T> {
return Generator(enumerator: self)
}
}
public struct Generator<T>: GeneratorType {
let enumerator: Enumerator<T>
public mutating func next() -> T? {
return enumerator.nextObject()
}
}
The compiler is telling you the answer: "Protocol 'Sequence' can only be used as a generic constraint because it has Self or associated type requirements".
You can therefore do this with generics:
private func _addToCurrentTileset<T: Sequence>(tilesToAdd tiles: T) {
...
}
This will allow you to pass in any concrete type that conforms to Sequence into your function. Swift will infer the concrete type, allowing you to pass the sequence around without lose type information.
If you want to restrict the type of the element in the sequence to a given protocol, you can do:
private func _addToCurrentTileset<T: Sequence>(tilesToAdd tiles: T) where T.Element: SomeProtocol {
...
}
Or to a concrete type:
private func _addToCurrentTileset<T: Sequence>(tilesToAdd tiles: T) where T.Element == SomeConcreteType {
...
}
If you don't care about the concrete type of the sequence itself (useful for mixing them together and in most cases storing them), then Anton's answer has got you covered with the type-erased version of Sequence.
You can use type-eraser AnySequence for that:
A type-erased sequence.
Forwards operations to an arbitrary underlying sequence having the same Element type, hiding the specifics of the underlying SequenceType.
E.g. if you will need to store tiles as an internal property or somehow use its concrete type in the structure of you object then that would be the way to go.
If you simply need to be able to use the sequence w/o having to store it (e.g. just map on it), then you can simply use generics (like #originaluser2 suggests). E.g. you might end up with something like:
private func _addToCurrentTileset<S: SequenceType where S.Generator.Element == Tile>(tilesToAdd tiles: S) {
let typeErasedSequence = AnySequence(tiles) // Type == AnySequence<Tile>
let originalSequence = tiles // Type == whatever type that conforms to SequenceType and has Tile as its Generator.Element
}

How do I specify that a non-generic Swift type should comply to a protocol?

I'd like to implement a Swift method that takes in a certain class type, but only takes instances of those classes that comply to a specific protocol. For example, in Objective-C I have this method:
- (void)addFilter:(GPUImageOutput<GPUImageInput> *)newFilter;
where GPUImageOutput is a particular class, and GPUImageInput is a protocol. Only GPUImageOutput classes that comply to this protocol are acceptable inputs for this method.
However, the automatic Swift-generated version of the above is
func addFilter(newFilter: GPUImageOutput!)
This removes the requirement that GPUImageOutput classes comply with the GPUImageInput protocol, which will allow non-compliant objects to be passed in (and then crash at runtime). When I attempt to define this as GPUImageOutput<GPUImageInput>, the compiler throws an error of
Cannot specialize non-generic type 'GPUImageOutput'
How would I do such a class and protocol specialization in a parameter in Swift?
Is swift you must use generics, in this way:
Given these example declarations of protocol, main class and subclass:
protocol ExampleProtocol {
func printTest() // classes that implements this protocol must have this method
}
// an empty test class
class ATestClass
{
}
// a child class that implements the protocol
class ATestClassChild : ATestClass, ExampleProtocol
{
func printTest()
{
println("hello")
}
}
Now, you want to define a method that takes an input parameters of type ATestClass (or a child) that conforms to the protocol ExampleProtocol.
Write the method declaration like this:
func addFilter<T where T: ATestClass, T: ExampleProtocol>(newFilter: T)
{
println(newFilter)
}
Your method, redefined in swift, should be
func addFilter<T where T:GPUImageOutput, T:GPUImageInput>(newFilter:T!)
{
// ...
}
EDIT:
as your last comment, an example with generics on an Enum
enum OptionalValue<T> {
case None
case Some(T)
}
var possibleInteger: OptionalValue<Int> = .None
possibleInteger = .Some(100)
Specialized with protocol conformance:
enum OptionalValue<T where T:GPUImageOutput, T:GPUImageInput> {
case None
case Some(T)
}
EDIT^2:
you can use generics even with instance variables:
Let's say you have a class and an instance variable, you want that this instance variable takes only values of the type ATestClass and that conforms to ExampleProtocol
class GiveMeAGeneric<T: ATestClass where T: ExampleProtocol>
{
var aGenericVar : T?
}
Then instantiate it in this way:
var child = ATestClassChild()
let aGen = GiveMeAGeneric<ATestClassChild>()
aGen.aGenericVar = child
If child doesn't conform to the protocol ExampleProtocol, it won't compile
this method header from ObjC:
- (void)addFilter:(GPUImageOutput<GPUImageInput> *)newFilter { ... }
is identical to this header in Swift:
func addFilter<T: GPUImageOutput where T: GPUImageInput>(newFilter: T?) { ... }
both method will accept the same set of classes
which is based on GPUImageOutput class; and
conforms GPUImageInput protocol; and
the newFilter is optional, it can be nil;
From Swift 4 onwards you can do:
func addFilter(newFilter: GPUImageOutput & GPUImageInput)
Further reading:
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
http://braking.github.io/require-conformance-to-multiple-protocols/
Multiple Type Constraints in Swift