What I would like to be able to do is programmatically change an anonymous function for example by changing all the plus signs to multiplication signs in the function. This example can in many cases this can be done as follows:
function f2 = changefunction(f1)
fs = func2str(f1);
fs(fs=='+') = '*';
f2 = str2func(fs);
end
But consider the example
f = #(x) x+5;
a = 5;
g = #(x) x+a;
Both f and g will be anonymous functions that adds 5 to whatever you plug into it; however only f will be changed correctly by the changefunction function, whereas g will be changed into a function that will err on any input.
So my question is is it possible to extract the workspace from the function handle and retain it in the new function handle created? I need to do it programmatically and preferably without using the built-in function functions!
One naive implementation is to replace str2func with eval so you are not running into str2func's roadblock of not allowing access to local variables. We can use functions to obtain the workspace information for the input function handle.
For example:
a = 5;
f = #(x) x+a;
finfo = functions(f)
Yields:
finfo =
struct with fields:
function: '#(x)x+a'
type: 'anonymous'
file: 'X:\testcode-matlab\testcode.m'
workspace: {[1×1 struct]}
within_file_path: 'testcode'
Where workspace is a cell array containing a structure (come on MathWorks...) containing all of the variables in your function handle's namespace:
>> wspace = finfo.workspace{1}
wspace =
struct with fields:
a: 5
Using this functionality, the naive solution is to loop through the variables in this workspace, assign them in the namespace of changefunction, then use eval to generate the new function handle.
For example:
function f2 = changefunction_new(f1)
tmp = functions(f1);
workspacevars = tmp.workspace{1};
varnames = fieldnames(workspacevars);
for ii = 1:length(varnames)
evalstr = sprintf('%s = %d;', varnames{ii}, workspacevars.(varnames{ii}));
eval(evalstr);
end
fs = func2str(f1);
fs(fs=='+') = '*';
f2 = eval(fs);
end
Here I'm assuming that the variables are going to be strictly numeric. You can add logic to check the class of the data to be generated if this is not always the case.
With this we have:
a = 5;
g = #(x) x+a;
test1 = changefunction(g);
test2 = changefunction_new(g);
>> g(1)
ans =
6
>> test1(1)
Undefined function or variable 'a'.
Error in testcode>#(x)x*a
>> test2(1)
ans =
5
All that being said, the best solution really is to just explicitly define your function handles. It may be a pain but it's much easier to understand and debug.
A few caveats:
Because eval arbitrarily executes all code passed to it, it can be a very dangerous function that must be used with care.
The documentation for functions warns against using it programmatically, so take care to check behavior as MATLAB versions change:
Use the functions function for querying and debugging purposes only.
Note: Do not use functions programmatically because its behavior could change in subsequent MATLAB® releases.
One possible way to do this is to save the function handle to a .mat file (using the -v7.3 flag so that it creates an easily-modifiable HDF5 file), modify the struct within the file that contains the workspace data for the anonymous function (using the HDF5 tools built into MATLAB), and then load the anonymous function again from the file.
Here is a little function which does exactly that (and it works for relatively simple variable types)
function result = modifyfunc(f, varname, value)
% modifyfunc - Modify the workspace of an anonymous function
%
% INPUTS:
% f: Function Handle, Anonymous function to modify
% varname: String, Name of the variable to modify
% value: Data to replace the specified variable
% If the value is a struct, recursively modify the function handle
if isstruct(value)
fields = fieldnames(value);
result = f;
% Modify each field separately
for k = 1:numel(fields)
% Append the fieldname to the variable name and modify
name = [varname, '.', fields{k}];
result = modifyfunc(result, name, value.(fields{k}));
end
return;
end
% Write the anonymous function to an HDF5 file
fname = tempname;
save(fname, 'f', '-mat', '-v7.3');
% Replace any "." in the variable name with "/" to construct the HDF5 path
varname = strrep(varname, '.' , '/');
% Now modify the data in the file
h5write(fname, ['/#refs#/e/' varname], value);
% Load the modified function handle from the file
result = load(fname, '-mat');
result = result.f;
% Remove the temporary file
delete(fname);
end
And you can use it like:
a = 1;
b = struct('field', 2);
f = #(x)disp(a + b.field + x);
f(10)
% 13
f2 = modifyfunc(f, 'a', 2);
f2(10)
% 14
f3 = modifyfunc(f2, 'b.field', 3);
f3(10)
% 15
b.field = 4;
f4 = modifyfunc(f3, 'b', b);
f4(10)
% 16
Some caveats include:
The replacement data must be the same size as the original data
This relies upon the format of the .mat file which for anonymous functions is completely undocumented so it could fail in future releases.
This currently doesn't work for variables in the function workspace that are cell arrays.
Related
Newbe here so please don't be too harsh.
I have these three functions, and each has it's own file:
format long
rd = #(x) runden(x,L);
function y = runden(x,L)
y = (round(x*10^L))/10^L;
endfunction
format long
function z = add(x,y,rd)
z = rd(rd(x)+rd(y));
endfunction
format long
function z = mult(x,y,rd)
z = rd(rd(x)*rd(y));
endfunction
as you see I want to use a function handle, so I can use round in the bottom two functions.
The functions have to be in their own files (wasn't a problem so far in matlab).
My Syntax is off, but I can't find a tutorial that handles function handles with two variables.
If I understand, the function handle rd lives only in the first script, and the other scripts can't access it.
If you will name the first file (function) as runden.m, and define rd in the other functions and not in the first one, they will have access to it.
And two notes- don't override preserved function names as add, and use end instead of endfunction.
I would suggest to arrange the functions like that:
% file 1, named `runden.m`
function y = runden(x,L)
format long
y = (round(x*10^L))/10^L;
end
% file 2, named `ad.m`
function z = ad(x,y,L)
format long
rd = #(x) runden(x,L);
z = rd(rd(x)+rd(y));
end
% file 3, named `mult.m`
function z = mult(x,y,L)
format long
rd = #(x) runden(x,L);
z = rd(rd(x)*rd(y));
end
load( lapFileSource, 'UntitledMeta_Data' );%My MetaData
universal={'TestType';'TestApparatus';'TestSystem Location';
'Configuration';'Wire condition';'Wire Type';'Circuit';};
u=11;
for o=drange(1:u)
if strcmp('',MetaData{o})
universal{o}='Null';
else
universal{o}=MetaData{o};
end
assignin('base','universal{o}',MetaData{o})
end
I am getting error to assignin the variable in workplace.
You need to read the documentation for the functions you use. From the documentation for assignin:
% The var input must be the array name only; it cannot contain array indices.
And, even more explicitly:
% assignin does not assign to specific elements of an array.
% The following statement generates an error:
X = 1:8;
assignin('base', 'X(3:5)', -1);
You can either shift your assignin call outside of the for loop and pass your full array to the base workspace, or you can follow the advice of the documentation and utilize evalin.
For example:
function trialcode
n = 5;
myarray = cell(1, 5);
for ii = 1:n;
if mod(ii,2)
myarray{ii} = 'odd';
else
myarray{ii} = 'even';
end
mycmd = sprintf('evalinarray{%u} = ''%s'';', ii, myarray{ii});
evalin('base', mycmd);
end
assignin('base','assigninarray', myarray)
end
The resulting arrays, evalinarray and assigninarray, are equivalent. Of the two, I would recommend using assignin as it is a lot more robust and explicit than the evalin approach.
I have a simple but interesting question. i tired hard to google it but my google got upset and giving me the same results...
i wanted to know is it possible to Update a constant variable form workspace command..
A Simple Example:
function y =StupidQuestion
a = 10; % some value
b =[5,6,7;1,2,8]; % some value
y = b*a % some operation
I forget to tell you that we can do it with simulink block by using below command
set_param('obj', 'parameter1', value1, 'parameter2', value2, ...)
i Want to use the assigned value for 3 weeks and without any reason i wants to change my values [a,b] to other but through command windows. any Idea. Waiting for your interesting Reply...................
You can set defaults for the inputs:
function y = foo(a,b)
if nargin < 1 || isempty(a), a = 10; end
if nargin < 2 || isempty(b), b = [5,6,7;1,2,8]; end
y = b*a
end
You can call foo() without inputs (and it will use the defaults for a and b) or supply your own values as: foo(12), foo(12,[10,20]), foo([],[23,23]), etc...
A possible way is to save some variables in an external file. Note that in this case a and b are only in the function workspace (you won't see their values unless you load the contents of test.mat separately). I'm passing the filename in rather than hard-coding it in case you need to switch between multiple settings.
Personally I would prefer to have a human-readable data file, but the concept remains the same (you'd just need some parser function which returned values for a and b given a file).
a = 10; % some value
b =[5,6,7;1,2,8]; % some value
save('test.mat','a','b');
clear a b;
function y = savedvariables(filename)
load(filename);
y = b*a; % some operation
end
y = savedvariables('test.mat');
Is there a way to use varargin inputs in several different forms. I would like the varargin inputs to become the name of a structure, but I also want it be passed into a fprintf which doesn't accept cell or structure arrays. If I have a function like:
function[] = myfunc(varargin)
for k = varargin
for m = 'ABC'
for n = 1:10
varname = sprintf('%c%d',m,n);
filename = sprintf('Images\\%s',varname);
fprintf('Take measurement %s for %s\n',k,varname);
image = imread(fullfile(filename));
pause
cursor_info = evalin('base','cursor_info');
p1 = cursor_info(2).Position
p2 = cursor_info(1).Position
[d,s] = measure(p1,p2) %measure is a separate function in my directory
k.(varname) = [d,s]
end
end
save('Distances,'k','-append')
end
My function is used to analyze several pictures, hence the ABC and 1:10 for loops. If I call the function with inputs of 'M1', 'M2', 'M3', I would like the function to create structures M1, M2, and M3 with A1,B1,C1 - A10,B10,C10 as the field names. [d,s] will be the data saved in each field which is found with the imagesc GUI and function measure.
The problem is that in the loop iterations I want the varargin inputs to be inputed into fprintf and I also want the varargin inputs to become the structure name. I can edit the code so that fprintf accepts the inputs using the function char. But is it possible to have an input in a function become the name of structure to fill with data? And if so, the solution still has to allow the iterator k to be passed into fprintf.
You can have a single structure that holds all k-s, then you can save it with '-struct' option to "strip" it into its fields:
function[] = myfunc(varargin)
for k = varargin
for m = 'ABC'
for n = 1:10
% your stuff here... I am too lazy to copy it...
[d,s] = measure(p1,p2) %measure is a separate function in my directory
meta.(k{1}).(varname) = [d,s] ; % note the {1} for k, loop over cell elements
end
end
save('Distances','meta','-struct','-append'); % not 100% sure -append wirks with -struct, you'll have to verify that...
end
I have an m-file function with 4 outputs. I would like to define an anonymous function that has the same inputs, but only produces 2 of the four outputs. Is this possible?
AFAIK, you can't do this with just an inline anonymous function, because that Matlab syntax doesn't provide a way of capturing and indexing in to multiple outputs of a function in a single expression. But you can write a couple reusable helper functions that do so, and then define anonymous functions using them.
Let's say your four argout function is named "f4".
function varargout = f4(x)
%F4 Dummy function that returns 4 argouts holding identifying indexes
varargout = num2cell(1:4);
Here's a reusable helper function that remaps outputs of a function call.
function varargout = callandmap(fcn, ix, varargin)
%CALLANDMAP Call a function and rearrange its output arguments
tmp = cell(1,max(ix)); % Capture up to the last argout used
[tmp{:}] = fcn(varargin{:}); % Call the original function
varargout = tmp(ix); % Remap the outputs
Now you can make anonymous, argout-remapping functions like this. Here, g holds an anonymous function that takes the same inputs as your original function, but just returns 2 of its original 4 outputs.
>> g = #(varargin) callandmap(#f4, [2 4], varargin{:})
g =
#(varargin)callandmap(#f4,[2,4],varargin{:})
>> [a,b] = g('dummy') % gets argouts 2 and 4 from original f4() function
a =
2
b =
4
>>
Using varargin allows you to omit trailing arguments when the resulting function handle is called. If you know all argins will always be provided, you can use named argins for readability if you want.
You can get even fancier and do this with a closure.
function fcn = mapargout(fcnIn, ixArgout)
%MAPARGOUT Create wrapper function that selects or reorders argouts
%
% fcn = argoutselector(fcnIn, ixArgout)
%
% Wraps a given function handle in a function that rearranges its argouts.
% This uses closures so it may have performance impacts.
%
% FcnIn is a function handle to wrap.
%
% IxArgout is a list of indexes in to the original functions argout list
% that should be used as the outputs of the new function.
%
% Returns a function handle to a new function.
fcn = #extractor;
function varargout = extractor(varargin)
n = max(ixArgout);
tmp = cell(1,n);
% Call the wrapped function, capturing all the original argouts
[tmp{:}] = fcnIn(varargin{:});
% And then select the ones you want
varargout = tmp(ixArgout);
end
end
This results in simpler code for creating the anonymous function. And you could compose it with other function wrapper calls.
>> g = mapargout(#f4, [2 4])
g =
#mapargout/extractor
>> [a,b] = g('dummy')
a =
2
b =
4
>>
But closures can be tricky to work with in Matlab and may have performance implications. The callandmap approach is probably preferable unless you need the extra power.
If the two outputs are #1 and #2, everything is fine, and you don't have to worry about the other two outputs.
If the two outputs are any two others, you have two options
(1) Create a wrapper function with two outputs (note that in newer versions of Matlab you can replace the unused outputs dummy by ~.
function [out1,out2] = wrapperFunction(in1,in2,in3)
[dummy,out1,dummy,out2] = mainFunction(in1,in2,in3);
(2) Add another input variable that allows you to switch your function's behavior
function varargout = mainFunction(in1,in2,in3,outputSwitch)
%# make output switch optional
if nargin < 4 || isempty(outputSwitch)
outputSwitch = 0;
end
%# calculation here that creates out1-4
if outputSwitch
%# the special case where we only want outputs 2 and 4
varargout = {out2,out4};
else
%# return all four outputs
varargout = {out1,out2,out3,out4}
end
Then you can create the anonymous function as usual.