Using/Understanding Foreign Keys - postgresql

I have two tables:
Project_Info table that contains the project id (primary key), project name, and the project budget.
Project_Forecast table that contains project name and forecast amount
My question is...should I refer to the primary key in the Project_Info table in the Project_Forecast table? I'm new to SQL so I might be misunderstanding the concept but would doing this essentially refer each forecast amount back to the project via the project ID? If not, what would be better way of leveraging the primary key/foreign keys between these two tables?

should I refer to the primary key in the Project_Info table in the Project_Forecast table?
Yes
so I might be misunderstanding the concept but would doing this essentially refer each forecast amount back to the project via the project ID?
That's correct
Here is a basic schema for the tables you described:
CREATE TABLE project_info (
id serial unique, -- project ID
name text,
budget int
);
CREATE TABLE project_forecast (
id serial unique,
project_id int REFERENCES project_info (id),
forecast_budget int
);

you should build your tables like this,
Project_Info(
PojectID PK,
ProjectName,
ProjectBudget
)
Poject_Forecast(
ForcastID PK,
ProjectID FK,
ForcastAmount
)
The reason you don't want to have project name in the forecast table is that it is a property of a project and it would be redundant (non-normalized) to have it in two tables and cumbersome to manage if the project name changes. But to answer your question having the FK would relate each forecast to a project and would also not allow forecasts be created for projects that don't exist, or projects with forecasts be deleted. In other words when you make foreign keys the database will enforce referential integrity.
also I'm sure some people will mention if I don't you don't absolutely need a ForcastID in the ProjectForecast Table but it is probably a good idea.
I hope this answers your question.

Related

PostgreSQL database: Get rid of redundant transitive relation (maybe 3NF is failed)

I'm creating a hybrid between "X-Com Enemy Unknown" and "The Sims". I maintain game state in a database--PostgreSQL--but my question is structural, not engine-specific.
As in X-Com, there are some bases in different locations, so I create a table named Base with ID autoincrement identity as primary key.
Every base has some facilities in its territory, so I create a table named Facility with a foreign key Facility.Base_ID, referring to Base.ID.
Every base has some landing crafts in its hangars, so I create a table named Craft with a foreign key Craft.Base_ID, referring to Base.ID.
Every base has some troopers in its barracks, so I create a table named Trooper with a foreign key Trooper.Base_ID, referring to Base.ID.
Just to this point, everything seems to be ok, doesn't it? However...
I want to have some sort of staff instruction. Like in the X-Com game, every trooper can be assigned to some craft for offense action, or can be unassigned. In addition, every trooper can be assigned to some facility (or can be unassigned) for defense action. So, I have to add nullable foreign keys Trooper.Craft_ID and Trooper.Facility_ID, referring to Craft.ID and Facility.ID respectively.
That database has a redundancy. If some trooper is assigned to a craft or to a facility (or both), it has two (or even three) relations to the base--one direct relation through its Base_ID and some indirect relations as Facility(Trooper.Facility_ID).Base_ID and Craft(Trooper.Craft_ID).Base_ID. Even if I get rid of Trooper.Base_ID (e.g. I can make both assignment mandatory and create a mock craft and a mock facility in every base), I can't get rid of both trooper-facility-base and trooper-craft-base relations.
In addition to this redundancy, there is a worse problem--in case of a mistake, some trooper can be assigned to a craft from one base and to a facility from another base, that's a really nasty situation. I can prohibit it in the application business logic tier, but it's still allowed by the database.
There can be some constraints to apply, but is there any structural modification to the schema that can get rid of the redundancy and potential inconsistency as a result of a good structure, not as a result of constraints?
CREATE TABLE base (
id int PRIMARY KEY
);
CREATE TABLE facility (
id int PRIMARY KEY,
base_id int REFERENCES base
);
CREATE TABLE craft (
id int PRIMARY KEY,
base_id int REFERENCES base
);
CREATE TABLE trooper (
id int PRIMARY KEY,
assigned_facility_id int REFERENCES facility,
assigned_craft_id int REFERENCES craft,
base_id int REFERENCES base
);
Now I want to get some sort of constraints on a trooper t so that
facilities.get(t.assigned_facility_id).base_id IS NULL OR EQUAL TO t.base_id
crafts.get(t.assigned_craft_id).base_id IS NULL OR EQUAL TO t.base_id
This hypothetical constraint has to be applied to table trooper, because it applies in boundaries of each trooper row separately. Constraints on one table have to check equality between fields of two other tables.
I would like to create a database schema where there is exactly one way, having a trooper.id, to find its referenced base.id. How do I normalise my schema?

Would this PostgresQL model work for long-term use and security?

I'm making a real-time chat app and was stuck figuring out how the DB model should look like. I've made this diagram, but would this work? My issue is more to do with foreign keys.
I know this is a very vague question. But have been struggling with this model for a while now. This is the first database I'm setting up so it's probably got a load of errors.
Actually you are fairly close, but over complicated it a bit. At the conceptual/logical model you have just 2 entities. Users and Messages
with a many-to-many relationship. At the physical level the Channels table resolves the M:M into the 2 one_to_many you have described. But the
viewing this way ravels a couple issues. The attribute user is not required in the Messages table and if physically implemented requires a not easily done validation
that the user there exists in the Channels table. Further everything that Message:User relationship provides is a available
via Users:Channels:Messages relationship. A similar argument applies to Channels column in Users - completely resolved by the resolution table. Suggestion: drop user from message table and channels from users.
Now lets look at the columns of Channels. It looks like you using a boiler plate for created_at and updated_at, but are they necessary?
Well at least for updated_at No. What can be updated? If either User or Message is updated you have a brand new entry. Yes it may seem like the same physical row (actually it is not)
but the meaning is completely different. Well how about last massage? What is it trying to indicate that the max value created at for the user does not give you?
I cannot see anything. I guess you could change the created at but what is the point of tracking when I changed that column. Suggestion: drop last message sent and updated at (unless required by Institution standards) from message table.
That leaves the Users table itself. Besides Channels mentioned above there is the Contacts column. Physically as a array it violates 1NF and becomes difficult to manage - (as wall as validating that the contact is in fact a user)
Logically it is creating a M:M on USER:USER. So resolve it the same way as User:Messages, pull it out into another table, say User_Contacts with 2 attributes to the Users table. Suggestion drop contacts for the users table and create a resolution table.
Unfortunately, I do not have a good ERD diagrammer, so I just provide DDL.
create table users (
user_id integer generated always as identity primary key
, name text
, phone_number text
, last_login timestamptz
, created_at timestamptz
, updated_at timestamptz
) ;
create type message_type as enum ('short', 'long'); -- list all values
create table messages(
msg_id integer generated always as identity primary key
, msg_type message_type
, message text
, created_at timestamptz
, updated_at timestamptz
);
create table channels( -- resolves M:M Users:Messages
user_id integer
, msg_id integer
, created_at timestamptz
, constraint channels_pk
primary key (user_id, msg_id)
, constraint channels_2_users_fk
foreign key (user_id)
references users(user_id)
, constraint channels_2_messages_fk
foreign key (msg_id)
references messages(msg_id )
);
create table user_contacts( -- resolves M:M Users:Users
user_id integer
, contact_id integer
, created_at timestamptz
, constraint user_contacts_pk
primary key (user_id, contact_id)
, constraint user_2_users_fk
foreign key (user_id)
references users(user_id)
, constraint contact_2_user_fk
foreign key (user_id)
references users(user_id)
, constraint contact_not_me_check check (user_id <> contact_id)
);
Notes:
Do not use text as PK, use either integer (bigint) or UUID, and generate them during insert.
Caution on ENUM. In Postgres you can add new values, but you cannot remove a value. Depending upon number of values and how often the change consider creating a lookup/reference table for them.
Do not use the data type TIME. It is really not that useful without the date. Simple example I login today at 15:00, you login tomorrow at 13:00. Now, from the database itself, which of us logged in first.

understanding an inheritance in Postgres; why key "fails" in insert/update command

(One image, tousands of words)
I'd made few tables that are inherited between themselves. (persons)
And then assign child table (address), and relate it only to "base" table (person).
When try to insert in child table, and record is related to inherited table, insert statement fail because there is no key in master table.
And as I insert records in descendant tables, records are salo available in base table (so, IMHO, should be visible/accessible in inherited tables).
Please take a look on attached image. Obviously do someting wrong or didn't get some point....
Thank You in advanced!
Sorry, that's how Postgres table inheritance works. 5.10.1 Caveats explains.
A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign key constraints only apply to single tables, not to their inheritance children. This is true on both the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:
Specifying that another table's column REFERENCES cities(name) would allow the other table to contain city names, but not capital names. There is no good workaround for this case.
In their example, capitals inherits from cities as organization_employees inherits from person. If person_address REFERENCES person(idt_person) it will not see entries in organization_employees.
Inheritance is not as useful as it seems, and it's not a way to avoid joins. This can be better done with a join table with some extra columns. It's unclear why an organization would inherit from a person.
person
id bigserial primary key
name text not null
verified boolean not null default false
vat_nr text
foto bytea
# An organization is not a person
organization
id bigserial not null
name text not null
# Joins a person with an organization
# Stores information about that relationship
organization_employee
person_id bigint not null references person(id)
organization_id bigint not null references organization(id)
usr text
pwd text
# Get each employee, their name, and their org's name.
select
person.name
organization.name
from
organization_employee
join person on person_id = person.id
join organization on organization_id = organization.id
Use bigserial (bigint) for primary keys, 2 billion comes faster than you think
Don't enshrine arbitrary business rules in the schema, like how long a name can be. You're not saving any space by limiting it, and every time the business rule changes you have to alter your schema. Use the text type. Enforce arbitrary limits in the application or as constraints.
idt_table_name primary keys makes for long, inconsistent column names hard to guess. Why is the primary key of person_address not idt_person_address? Why is the primary key of organization_employee idt_person? You can't tell, at a glance, which is the primary key and which is a foreign key. You still need to prepend the column name to disambiguate; for example, if you join person with person_address you need person.idt_person and person_address.idt_person. Confusing and redundant. id (or idt if you prefer) makes it obvious what the primary key is and clearly differentiates it from table_id (or idt_table) foreign keys. SQL already has the means to resolve ambiguities: person.id.

Do i really need individual table for my three types of users?

If i have three type of users. Let's say seller, consumers, and sales persons. Should i make individual table for there details like name, email passwords and all other credentials etc with a role_type table or separate table for each of them. Which is the best approach for a large project considering all engineering principles for DBMS like normalization etc.
Also tell me Does it effect the performance of the app if i have lots of joins in tables to perform certain operations?
If the only thing that distinguishes those people is the role but all details are the same, then I would definitely go for a single table.
The question is however, can a single person have more than one role? If that is never the case, then add a role_type column to the person table. Depending on how fixed those roles are maybe use a lookup table and a foreign key, e.g.:
create table role_type
(
id integer primary key,
name varchar(20) not null unique
);
create table person
(
id integer primary key,
.... other attributes ...,
role_id integer not null references role_type
);
However, in my experience the restriction to exactly one role per person usually doesn't hold, so you would need a many-to-many relation ship
create table role_type
(
id integer primary key,
name varchar(20) not null unique
);
create table person
(
id integer primary key,
.... other attributes ...,
);
create table person_role
(
person_id integer not null references person,
role_id integer not null references role_type,
primary key (person_id, role_id)
);
It sounds like this is a case of trying to model inheritance in your relational database. Complex topic, discussed here and here.
It sounds like your "seller, consumer, sales person" will need lots of different attributes and relationships. A seller typically belongs to a department, has targets, is linked to sales. A consumer has purchase history, maybe a credit limit, etc.
If that's the case,I'd suggest "class table inheritance" might be the right solution.
That might look something like this.
create table user_account
(id int not null,
username varchar not null,
password varchar not null
....);
create table buyer
(id int not null,
user_account_id int not null(fk),
credit_limit float not null,
....);
create table seller
(id int not null,
user_account_id int not null(fk),
sales_target float,
....);
To answer your other question - relational databases are optimized for joining tables. Decades of research and development have gone into this area, and a well-designed database (with indexes on the columns you're joining on) will show no noticeable performance impact due to joins. From practical experience, queries with hundreds of millions of records and ten or more joins run very fast on modern hardware.

How to define One to One relationship in ServiceBuilder

I am using Liferay 6.1
I have two tables namely Customers and Orders for my Module as shown below
CREATE TABLE Customer
(SID integer,
Last_Name varchar(30),
First_Name varchar(30),
PRIMARY KEY (SID));
CREATE TABLE ORDERS
(Order_ID integer,
Customer_SID integer UNIQUE,
Primary Key (Order_ID),
Foreign Key (Customer_SID) references CUSTOMER(SID));
Could anybody please tell me how can i provide a One to One relation in servicebuilder file
I am worried as i have seen this in JIRA
https://issues.liferay.com/browse/LPS-11479
Is that true ?
It's true - ServiceBuilder doesn't support one-to-one relations.
You can use the workarround given in the jira issue or build the service first and then define the associations using hibernate afterwards (dirty hack - hard to maintain).