Scala for expressions in tail recursive form - scala

I have a bit of a problem trying to come up with a valid way to convert a for - expression N queens solution to a tail recursive form and still preserve the idiomatic nature achieved by using the for syntax. Any ideas are more than welcome.
def place(boardSize: Int, n: Int): Solutions = n match {
case 0 => List(Nil)
case _ =>
for {
queens <- place(boardSize, n - 1)
y <- 1 to boardSize
queen = (n, y)
if (isSafe(queen, queens))
} yield queen :: queens
}
def isSafe(queen: Queen, others: List[Queen]) = {...}

What you're writing basically corresponds to what's called Depth-First Search (DFS).
Although a recursive implementation of DFS is easily written, it is not tail-recursive. Here's a proposal for a tail-recursive one. Note that I did not test this code, but it should at least give you an idea of how to proceed.
def solve(): List[List[Int]] = {
#tailrec def solver(fringe: List[List[Int]], solutions: List[List[Int]]): List[List[Int]] = fringe match {
case Nil => solutions
case potentialSol :: fringeTail =>
if(potentialSol.length == n) // We found a solution
solver(fringe.tail, potentialSol.reverse :: solutions)
else { // Keep looking
val unused = (1 to n).toList filterNot potentialSol.contains
val children = for(u <- unused ; partial = u :: fringe.head if isValid(partial)) yield partial
solver(children ++ fringe.tail, solutions)
}
}
solver((1 to n).toList.map(List(_)), Nil).map(_.reverse)
}
If you're concerned about performances, note that this solution is very poor because it uses slow operations on immutable data structure, and because on the JVM you're better off using iteration where performance matters. This will start failing quite rapidly as n increases. Algorithmically, there are far better ways to solve NQueens than using DFS.

Related

How to add to a list you're returning?

Sorry if this is a stupid question as I am a total beginner. I have a function factors which looks like this:
def factors (n:Int):List[Int] = {
var xs = List[Int]()
for(i <- 2 to (n-1)) {
if(n%i==0) {xs :+ i}
}
return xs
}
However if I do println(factors(10)) I always get List().
What am I doing wrong?
The :+ operation returns a new List, you never assign it to xs.
def factors (n:Int):List[Int] = {
var xs = List[Int]()
for (i <- 2 to (n - 1)) {
if(n%i==0) {xs = xs :+ i}
}
return xs
}
But, you really shouldn't be using var. We don't like them very much in Scala.
Also don't don't don't use return in Scala. It is a much more loaded keyword than you might think. Read about it here
Here is a better way of doing this.
def factors (n:Int): List[Int] =
for {
i <- (2 to (n - 1)).toList
if (n % i) == 0
} yield i
factors(10)
You don't need .toList either but didn't want to mess with your return types. You are welcome to adjust
Working link: https://scastie.scala-lang.org/haGESfhKRxqDdDIpaHXfpw
You can think of this problem as a filtering operation. You start with all the possible factors and you keep the ones where the remainder when dividing the input by that number is 0. The operation that does this in Scala is filter, which keeps values where a particular test is true and removes the others:
def factors(n: Int): List[Int] =
(2 until n).filter(n % _ == 0).toList
To keep the code short I have also used the short form of a function where _ stands for the argument to the function, so n % _ means n divided by the current number that is being tested.

Scala: Implementing a mathematical recursion with convergence

Many numerical problems are of the form:
initialize: x_0 = ...
iterate: x_i+1 = function(x_i) until convergence, e.g.,
|| x_i+1 - x_i || < epsilon
I'm wondering whether there is a nice way to write such an algorithm using idiomatic Scala. The nature of the problem calls for an Iterator or Stream. However, my current take on this looks really ugly:
val xFinal = Iterator.iterate(xInit) { x_i =>
// update x_i+1
}.toList // necessary to pattern match within takeWhile
.sliding(2) // necessary since takeWhile needs pair-wise comparison
.takeWhile{ case x_i :: x_iPlus1 :: Nil => /* convergence condition */ }
.toList // since the outer container is still an Iterator
.last // to get the last element of the iteration
.last // to get x_iPlus1
This is not only ugly, the pattern matching in takeWhile also causes a warning. Obviously I do not have to pattern-match here, but I would love to keep a strong resemblance to the mathematical original.
Any ideas to make this look more beautiful?
The following minimalist (silly) example may illustrate none the less a useful framework to adapt,
def function (i:Int): Int = i+1
def iter (x0: Int): Int = {
val x1 = function(x0)
if (x1 - x0 == 1) x1 else iter(x1)
}
Here is my solution for the example of finding the square root using Newton's method, which reduces in this case to the Babylonian method:
import math.abs
val tol=0.00001
val desiredSqRoot=256
val xFinal = Iterator.iterate(1.0) { x => 0.5*(x+desiredSqRoot/x) }
def converged(l: Seq[Double]): Boolean = l match{
case x_old :: x_new :: Nil => if( abs(x_old-x_new)/x_old < tol ) true else false
case _ => true
}
xFinal.sliding(2).dropWhile( x=> !converged(x) ).next.last
which results as:
scala> xFinal.sliding(2).dropWhile( x=> !converged(x) ).next.last
res23: Double = 16.00000000000039
In this example we know the value it should converge to, yet I've written the convergence criterion without this knowledge, because in general we don't know this.

Convert normal recursion to tail recursion

I was wondering if there is some general method to convert a "normal" recursion with foo(...) + foo(...) as the last call to a tail-recursion.
For example (scala):
def pascal(c: Int, r: Int): Int = {
if (c == 0 || c == r) 1
else pascal(c - 1, r - 1) + pascal(c, r - 1)
}
A general solution for functional languages to convert recursive function to a tail-call equivalent:
A simple way is to wrap the non tail-recursive function in the Trampoline monad.
def pascalM(c: Int, r: Int): Trampoline[Int] = {
if (c == 0 || c == r) Trampoline.done(1)
else for {
a <- Trampoline.suspend(pascal(c - 1, r - 1))
b <- Trampoline.suspend(pascal(c, r - 1))
} yield a + b
}
val pascal = pascalM(10, 5).run
So the pascal function is not a recursive function anymore. However, the Trampoline monad is a nested structure of the computation that need to be done. Finally, run is a tail-recursive function that walks through the tree-like structure, interpreting it, and finally at the base case returns the value.
A paper from RĂșnar Bjanarson on the subject of Trampolines: Stackless Scala With Free Monads
In cases where there is a simple modification to the value of a recursive call, that operation can be moved to the front of the recursive function. The classic example of this is Tail recursion modulo cons, where a simple recursive function in this form:
def recur[A](...):List[A] = {
...
x :: recur(...)
}
which is not tail recursive, is transformed into
def recur[A]{...): List[A] = {
def consRecur(..., consA: A): List[A] = {
consA :: ...
...
consrecur(..., ...)
}
...
consrecur(...,...)
}
Alexlv's example is a variant of this.
This is such a well known situation that some compilers (I know of Prolog and Scheme examples but Scalac does not do this) can detect simple cases and perform this optimisation automatically.
Problems combining multiple calls to recursive functions have no such simple solution. TMRC optimisatin is useless, as you are simply moving the first recursive call to another non-tail position. The only way to reach a tail-recursive solution is remove all but one of the recursive calls; how to do this is entirely context dependent but requires finding an entirely different approach to solving the problem.
As it happens, in some ways your example is similar to the classic Fibonnaci sequence problem; in that case the naive but elegant doubly-recursive solution can be replaced by one which loops forward from the 0th number.
def fib (n: Long): Long = n match {
case 0 | 1 => n
case _ => fib( n - 2) + fib( n - 1 )
}
def fib (n: Long): Long = {
def loop(current: Long, next: => Long, iteration: Long): Long = {
if (n == iteration)
current
else
loop(next, current + next, iteration + 1)
}
loop(0, 1, 0)
}
For the Fibonnaci sequence, this is the most efficient approach (a streams based solution is just a different expression of this solution that can cache results for subsequent calls). Now,
you can also solve your problem by looping forward from c0/r0 (well, c0/r2) and calculating each row in sequence - the difference being that you need to cache the entire previous row. So while this has a similarity to fib, it differs dramatically in the specifics and is also significantly less efficient than your original, doubly-recursive solution.
Here's an approach for your pascal triangle example which can calculate pascal(30,60) efficiently:
def pascal(column: Long, row: Long):Long = {
type Point = (Long, Long)
type Points = List[Point]
type Triangle = Map[Point,Long]
def above(p: Point) = (p._1, p._2 - 1)
def aboveLeft(p: Point) = (p._1 - 1, p._2 - 1)
def find(ps: Points, t: Triangle): Long = ps match {
// Found the ultimate goal
case (p :: Nil) if t contains p => t(p)
// Found an intermediate point: pop the stack and carry on
case (p :: rest) if t contains p => find(rest, t)
// Hit a triangle edge, add it to the triangle
case ((c, r) :: _) if (c == 0) || (c == r) => find(ps, t + ((c,r) -> 1))
// Triangle contains (c - 1, r - 1)...
case (p :: _) if t contains aboveLeft(p) => if (t contains above(p))
// And it contains (c, r - 1)! Add to the triangle
find(ps, t + (p -> (t(aboveLeft(p)) + t(above(p)))))
else
// Does not contain(c, r -1). So find that
find(above(p) :: ps, t)
// If we get here, we don't have (c - 1, r - 1). Find that.
case (p :: _) => find(aboveLeft(p) :: ps, t)
}
require(column >= 0 && row >= 0 && column <= row)
(column, row) match {
case (c, r) if (c == 0) || (c == r) => 1
case p => find(List(p), Map())
}
}
It's efficient, but I think it shows how ugly complex recursive solutions can become as you deform them to become tail recursive. At this point, it may be worth moving to a different model entirely. Continuations or monadic gymnastics might be better.
You want a generic way to transform your function. There isn't one. There are helpful approaches, that's all.
I don't know how theoretical this question is, but a recursive implementation won't be efficient even with tail-recursion. Try computing pascal(30, 60), for example. I don't think you'll get a stack overflow, but be prepared to take a long coffee break.
Instead, consider using a Stream or memoization:
val pascal: Stream[Stream[Long]] =
(Stream(1L)
#:: (Stream from 1 map { i =>
// compute row i
(1L
#:: (pascal(i-1) // take the previous row
sliding 2 // and add adjacent values pairwise
collect { case Stream(a,b) => a + b }).toStream
++ Stream(1L))
}))
The accumulator approach
def pascal(c: Int, r: Int): Int = {
def pascalAcc(acc:Int, leftover: List[(Int, Int)]):Int = {
if (leftover.isEmpty) acc
else {
val (c1, r1) = leftover.head
// Edge.
if (c1 == 0 || c1 == r1) pascalAcc(acc + 1, leftover.tail)
// Safe checks.
else if (c1 < 0 || r1 < 0 || c1 > r1) pascalAcc(acc, leftover.tail)
// Add 2 other points to accumulator.
else pascalAcc(acc, (c1 , r1 - 1) :: ((c1 - 1, r1 - 1) :: leftover.tail ))
}
}
pascalAcc(0, List ((c,r) ))
}
It does not overflow the stack but as on big row and column but Aaron mentioned it's not fast.
Yes it's possible. Usually it's done with accumulator pattern through some internally defined function, which has one additional argument with so called accumulator logic, example with counting length of a list.
For example normal recursive version would look like this:
def length[A](xs: List[A]): Int = if (xs.isEmpty) 0 else 1 + length(xs.tail)
that's not a tail recursive version, in order to eliminate last addition operation we have to accumulate values while somehow, for example with accumulator pattern:
def length[A](xs: List[A]) = {
def inner(ys: List[A], acc: Int): Int = {
if (ys.isEmpty) acc else inner(ys.tail, acc + 1)
}
inner(xs, 0)
}
a bit longer to code, but i think the idea i clear. Of cause you can do it without inner function, but in such case you should provide acc initial value manually.
I'm pretty sure it's not possible in the simple way you're looking for the general case, but it would depend on how elaborate you permit the changes to be.
A tail-recursive function must be re-writable as a while-loop, but try implementing for example a Fractal Tree using while-loops. It's possble, but you need to use an array or collection to store the state for each point, which susbstitutes for the data otherwise stored in the call-stack.
It's also possible to use trampolining.
It is indeed possible. The way I'd do this is to
begin with List(1) and keep recursing till you get to the
row you want.
Worth noticing that you can optimize it: if c==0 or c==r the value is one, and to calculate let's say column 3 of the 100th row you still only need to calculate the first three elements of the previous rows.
A working tail recursive solution would be this:
def pascal(c: Int, r: Int): Int = {
#tailrec
def pascalAcc(c: Int, r: Int, acc: List[Int]): List[Int] = {
if (r == 0) acc
else pascalAcc(c, r - 1,
// from let's say 1 3 3 1 builds 0 1 3 3 1 0 , takes only the
// subset that matters (if asking for col c, no cols after c are
// used) and uses sliding to build (0 1) (1 3) (3 3) etc.
(0 +: acc :+ 0).take(c + 2)
.sliding(2, 1).map { x => x.reduce(_ + _) }.toList)
}
if (c == 0 || c == r) 1
else pascalAcc(c, r, List(1))(c)
}
The annotation #tailrec actually makes the compiler check the function
is actually tail recursive.
It could be probably be further optimized since given that the rows are symmetric, if c > r/2, pascal(c,r) == pascal ( r-c,r).. but left to the reader ;)

how to approach implementing TCO'ed recursion

I have been looking into recursion and TCO. It seems that TCO can make the code verbose and also impact the performance. e.g. I have implemented the code which takes in 7 digit phone number and gives back all possible permutation of words e.g. 464-7328 can be "GMGPDAS ... IMGREAT ... IOIRFCU" Here is the code.
/*Generate the alphabet table*/
val alphabet = (for (ch <- 'a' to 'z') yield ch.toString).toList
/*Given the number, return the possible alphabet List of String(Instead of Char for convenience)*/
def getChars(num : Int) : List[String] = {
if (num > 1) return List[String](alphabet((num - 2) * 3), alphabet((num - 2) * 3 + 1), alphabet((num - 2) * 3 + 2))
List[String](num.toString)
}
/*Recursion without TCO*/
def getTelWords(input : List[Int]) : List[String] = {
if (input.length == 1) return getChars(input.head)
getChars(input.head).foldLeft(List[String]()) {
(l, ch) => getTelWords(input.tail).foldLeft(List[String]()) { (ll, x) => ch + x :: ll } ++ l
}
}
It is short and I don't have to spend too much time on this. However when I try to do that in tail call recursion to get it TCO'ed. I have to spend a considerable amount of time and The code become very verbose. I won't be posing the whole code to save space. Here is a link to git repo link. It is for sure that quite a lot of you can write better and concise tail recursive code than mine. I still believe that in general TCO is more verbose (e.g. Factorial and Fibonacci tail call recursion has extra parameter, accumulator.) Yet, TCO is needed to prevent the stack overflow. I would like to know how you would approach TCO and recursion. The Scheme implementation of Akermann with TCO in this thread epitomize my problem statement.
Is it possible that you're using the term "tail call optimization", when in fact you really either mean writing a function in iterative recursive style, or continuation passing style, so that all the recursive calls are tail calls?
Implementing TCO is the job of a language implementer; one paper that talks about how it can be done efficiently is the classic Lambda: the Ultimate GOTO paper.
Tail call optimization is something that your language's evaluator will do for you. Your question, on the other hand, sounds like you are asking how to express functions in a particular style so that the program's shape allows your evaluator to perform tail call optimization.
As sclv mentioned in the comments, tail recursion is pointless for this example in Haskell. A simple implementation of your problem can be written succinctly and efficiently using the list monad.
import Data.Char
getChars n | n > 1 = [chr (ord 'a' + 3*(n-2)+i) | i <- [0..2]]
| otherwise = ""
getTelNum = mapM getChars
As said by others, I would not be worried about tail call for this case, as it does not recurse very deeply (length of the input) compared to the size of the output. You should be out of memory (or patience) before you are out of stack
I would implement probably implement with something like
def getTelWords(input: List[Int]): List[String] = input match {
case Nil => List("")
case x :: xs => {
val heads = getChars(x)
val tails = getTelWords(xs)
for(c <- heads; cs <- tails) yield c + cs
}
}
If you insist on a tail recursive one, that might be based on
def helper(reversedPrefixes: List[String], input: List[Int]): List[String]
= input match {
case Nil => reversedPrefixes.map(_.reverse)
case (x :: xs) => helper(
for(c <- getChars(x); rp <- reversedPrefixes) yield c + rp,
xs)
}
(the actual routine should call helper(List(""), input))

Selection sort in functional Scala

I'm making my way through "Programming in Scala" and wrote a quick implementation of the selection sort algorithm. However, since I'm still a bit green in functional programming, I'm having trouble translating to a more Scala-ish style. For the Scala programmers out there, how can I do this using Lists and vals rather than falling back into my imperative ways?
http://gist.github.com/225870
As starblue already said, you need a function that calculates the minimum of a list and returns the list with that element removed. Here is my tail recursive implementation of something similar (as I believe foldl is tail recursive in the standard library), and I tried to make it as functional as possible :). It returns a list that contains all the elements of the original list (but kindof reversed - see the explanation below) with the minimum as a head.
def minimum(xs: List[Int]): List[Int] =
(List(xs.head) /: xs.tail) {
(ys, x) =>
if(x < ys.head) (x :: ys)
else (ys.head :: x :: ys.tail)
}
This basically does a fold, starting with a list containing of the first element of xs If the first element of xs is smaller than the head of that list, we pre-append it to the list ys. Otherwise, we add it to the list ys as the second element. And so on recursively, we've folded our list into a new list containing the minimum element as a head and a list containing all the elements of xs (not necessarily in the same order) with the minimum removed, as a tail. Note that this function does not remove duplicates.
After creating this helper function, it's now easy to implement selection sort.
def selectionSort(xs: List[Int]): List[Int] =
if(xs.isEmpty) List()
else {
val ys = minimum(xs)
if(ys.tail.isEmpty)
ys
else
ys.head :: selectionSort(ys.tail)
}
Unfortunately this implementation is not tail recursive, so it will blow up the stack for large lists. Anyway, you shouldn't use a O(n^2) sort for large lists, but still... it would be nice if the implementation was tail recursive. I'll try to think of something... I think it will look like the implementation of a fold.
Tail Recursive!
To make it tail recursive, I use quite a common pattern in functional programming - an accumulator. It works a bit backward, as now I need a function called maximum, which basically does the same as minimum, but with the maximum element - its implementation is exact as minimum, but using > instead of <.
def selectionSort(xs: List[Int]) = {
def selectionSortHelper(xs: List[Int], accumulator: List[Int]): List[Int] =
if(xs.isEmpty) accumulator
else {
val ys = maximum(xs)
selectionSortHelper(ys.tail, ys.head :: accumulator)
}
selectionSortHelper(xs, Nil)
}
EDIT: Changed the answer to have the helper function as a subfunction of the selection sort function.
It basically accumulates the maxima to a list, which it eventually returns as the base case. You can also see that it is tail recursive by replacing accumulator by throw new NullPointerException - and then inspect the stack trace.
Here's a step by step sorting using an accumulator. The left hand side shows the list xs while the right hand side shows the accumulator. The maximum is indicated at each step by a star.
64* 25 12 22 11 ------- Nil
11 22 12 25* ------- 64
22* 12 11 ------- 25 64
11 12* ------- 22 25 64
11* ------- 12 22 25 64
Nil ------- 11 12 22 25 64
The following shows a step by step folding to calculate the maximum:
maximum(25 12 64 22 11)
25 :: Nil /: 12 64 22 11 -- 25 > 12, so it stays as head
25 :: 12 /: 64 22 11 -- same as above
64 :: 25 12 /: 22 11 -- 25 < 64, so the new head is 64
64 :: 22 25 12 /: 11 -- and stays so
64 :: 11 22 25 12 /: Nil -- until the end
64 11 22 25 12
You should have problems doing selection sort in functional style, as it is an in-place sort algorithm. In-place, by definition, isn't functional.
The main problem you'll face is that you can't swap elements. Here's why this is important. Suppose I have a list (a0 ... ax ... an), where ax is the minimum value. You need to get ax away, and then compose a list (a0 ... ax-1 ax+1 an). The problem is that you'll necessarily have to copy the elements a0 to ax-1, if you wish to remain purely functional. Other functional data structures, particularly trees, can have better performance than this, but the basic problem remains.
here is another implementation of selection sort (generic version).
def less[T <: Comparable[T]](i: T, j: T) = i.compareTo(j) < 0
def swap[T](xs: Array[T], i: Int, j: Int) { val tmp = xs(i); xs(i) = xs(j); xs(j) = tmp }
def selectiveSort[T <: Comparable[T]](xs: Array[T]) {
val n = xs.size
for (i <- 0 until n) {
val min = List.range(i + 1, n).foldLeft(i)((a, b) => if (less(xs(a), xs(b))) a else b)
swap(xs, i, min)
}
}
You need a helper function which does the selection. It should return the minimal element and the rest of the list with the element removed.
I think it's reasonably feasible to do a selection sort in a functional style, but as Daniel indicated, it has a good chance of performing horribly.
I just tried my hand at writing a functional bubble sort, as a slightly simpler and degenerate case of selection sort. Here's what I did, and this hints at what you could do:
define bubble(data)
if data is empty or just one element: return data;
otherwise, if the first element < the second,
return first element :: bubble(rest of data);
otherwise, return second element :: bubble(
first element :: (rest of data starting at 3rd element)).
Once that's finished recursing, the largest element is at the end of the list. Now,
define bubblesort [data]
apply bubble to data as often as there are elements in data.
When that's done, your data is indeed sorted. Yes, it's horrible, but my Clojure implementation of this pseudocode works.
Just concerning yourself with the first element or two and then leaving the rest of the work to a recursed activity is a lisp-y, functional-y way to do this kind of thing. But once you've gotten your mind accustomed to that kind of thinking, there are more sensible approaches to the problem.
I would recommend implementing a merge sort:
Break list into two sub-lists,
either by counting off half the elements into one sublist
and the rest in the other,
or by copying every other element from the original list
into either of the new lists.
Sort each of the two smaller lists (recursion here, obviously).
Assemble a new list by selecting the smaller from the front of either sub-list
until you've exhausted both sub-lists.
The recursion is in the middle of that, and I don't see a clever way of making the algorithm tail recursive. Still, I think it's O(log-2) in time and also doesn't place an exorbitant load on the stack.
Have fun, good luck!
Thanks for the hints above, they were very inspiring. Here's another functional approach to the selection sort algorithm. I tried to base it on the following idea: finding a max / min can be done quite easily by min(A)=if A=Nil ->Int.MaxValue else min(A.head, min(A.tail)). The first min is the min of a list, the second the min of two numbers. This is easy to understand, but unfortunately not tail recursive. Using the accumulator method the min definition can be transformed like this, now in correct Scala:
def min(x: Int,y: Int) = if (x<y) x else y
def min(xs: List[Int], accu: Int): Int = xs match {
case Nil => accu
case x :: ys => min(ys, min(accu, x))
}
(This is tail recursive)
Now a min version is needed which returns a list leaving out the min value. The following function returns a list whose head is the min value, the tail contains the rest of the original list:
def minl(xs: List[Int]): List[Int] = minl(xs, List(Int.MaxValue))
def minl(xs: List[Int],accu:List[Int]): List[Int] = xs match {
// accu always contains min as head
case Nil => accu take accu.length-1
case x :: ys => minl(ys,
if (x<accu.head) x::accu else accu.head :: x :: accu.tail )
}
Using this selection sort can be written tail recursively as:
def ssort(xs: List[Int], accu: List[Int]): List[Int] = minl(xs) match {
case Nil => accu
case min :: rest => ssort(rest, min::accu)
}
(reverses the order). In a test with 10000 list elements this algorithm is only about 4 times slower than the usual imperative algorithm.
Even though, when coding Scala, I'm used to prefer functional programming style (via combinators or recursion) over imperative style (via variables and iterations), THIS TIME, for this specific problem, old school imperative nested loops result in simpler and more performant code.
I don't think falling back to imperative style is a mistake for certain classes of problems, such as sorting algorithms which usually transform the input buffer in place rather than resulting to a new collection.
My solution is:
package bitspoke.algo
import scala.math.Ordered
import scala.collection.mutable.Buffer
abstract class Sorter[T <% Ordered[T]] {
// algorithm provided by subclasses
def sort(buffer : Buffer[T]) : Unit
// check if the buffer is sorted
def sorted(buffer : Buffer[T]) = buffer.isEmpty || buffer.view.zip(buffer.tail).forall { t => t._2 > t._1 }
// swap elements in buffer
def swap(buffer : Buffer[T], i:Int, j:Int) {
val temp = buffer(i)
buffer(i) = buffer(j)
buffer(j) = temp
}
}
class SelectionSorter[T <% Ordered[T]] extends Sorter[T] {
def sort(buffer : Buffer[T]) : Unit = {
for (i <- 0 until buffer.length) {
var min = i
for (j <- i until buffer.length) {
if (buffer(j) < buffer(min))
min = j
}
swap(buffer, i, min)
}
}
}
As you can see, to achieve parametric polymorphism, rather than using java.lang.Comparable, I preferred scala.math.Ordered and Scala View Bounds rather than Upper Bounds. That's certainly works thanks to Scala Implicit Conversions of primitive types to Rich Wrappers.
You can write a client program as follows:
import bitspoke.algo._
import scala.collection.mutable._
val sorter = new SelectionSorter[Int]
val buffer = ArrayBuffer(3, 0, 4, 2, 1)
sorter.sort(buffer)
assert(sorter.sorted(buffer))
A simple functional program for selection-sort in Scala
def selectionSort(list:List[Int]):List[Int] = {
#tailrec
def selectSortHelper(list:List[Int], accumList:List[Int] = List[Int]()): List[Int] = {
list match {
case Nil => accumList
case _ => {
val min = list.min
val requiredList = list.filter(_ != min)
selectSortHelper(requiredList, accumList ::: List.fill(list.length - requiredList.length)(min))
}
}
}
selectSortHelper(list)
}
You may want to try replacing your while loops with recursion, so, you have two places where you can create new recursive functions.
That would begin to get rid of some vars.
This was probably the toughest lesson for me, trying to move more toward FP.
I hesitate to show solutions here, as I think it would be better for you to try first.
But, if possible you should be using tail-recursion, to avoid problems with stack overflows (if you are sorting a very, very large list).
Here is my point of view on this problem: SelectionSort.scala
def selectionsort[A <% Ordered[A]](list: List[A]): List[A] = {
def sort(as: List[A], bs: List[A]): List[A] = as match {
case h :: t => select(h, t, Nil, bs)
case Nil => bs
}
def select(m: A, as: List[A], zs: List[A], bs: List[A]): List[A] =
as match {
case h :: t =>
if (m > h) select(m, t, h :: zs, bs)
else select(h, t, m :: zs, bs)
case Nil => sort(zs, m :: bs)
}
sort(list, Nil)
}
There are two inner functions: sort and select, which represents two loops in original algorithm. The first function sort iterates through the elements and call select for each of them. When the source list is empty it return bs list as result, which is initially Nil. The sort function tries to search for maximum (not minimum, since we build result list in reversive order) element in source list. It suppose that maximum is head by the default and then just replace it with a proper value.
This is 100% functional implementation of Selection Sort in Scala.
Here is my solution
def sort(list: List[Int]): List[Int] = {
#tailrec
def pivotCompare(p: Int, l: List[Int], accList: List[Int] = List.empty): List[Int] = {
l match {
case Nil => p +: accList
case x :: xs if p < x => pivotCompare(p, xs, accList :+ x)
case x :: xs => pivotCompare(x, xs, accList :+ p)
}
}
#tailrec
def loop(list: List[Int], accList: List[Int] = List.empty): List[Int] = {
list match {
case x :: xs =>
pivotCompare(x, xs) match {
case Nil => accList
case h :: tail => loop(tail, accList :+ h)
}
case Nil => accList
}
}
loop(list)
}