I need to calculate the integral of a function on some discrete data points in Matlab. I have the absolute coordinate of each point:
x=[1,2.65,3.25,3.33,15.65]
y=[10,31,15,-6,1]
I was trying to use trapz(x,y) function but there x must be the spacing between data points, not the x coordinate of data points.
What is the easiest way to calculate such an integration?
With integral you can specify way points as option in 1D. With integral2 for 2D integration, it seems you cannot.
It also seems you have a 2D rectangular grid of integration points?
In that case just calculate weights according to the mean interval lengths (via diff) and then sum up. Since your integration grid is fixed, the precision of the numerical integration will anyway not be controllable and will depend on the function you'll integrate.
% get grid
x = [1, 3, 7, 15]';
y = [3, 6, 8];
[xi, yi] = ndgrid(x, y);
% get weights
h = diff(x, [], 1);
wx = ([h; 1] + [1; h]) / 2;
h = diff(y, [], 2);
wy = ([h, 1] + [1, h]) / 2;
w = wx * wy;
% calculate function
f = func(xi, yi);
% integration is weighted summation
int = sum(f(:) .* w(:));
Borders will have to be treated carefully. Also, your list of coordinates needs to be sorted.
Related
The stairstep-look of the graph is unintentional. When I plot the same-sized vectors Arb and V (plot (Arb, V, 'r')) I get the following graph:
enter image description here
To make it smoother, I tried using 1-D data interpolation, interp1, as follows:
xq = 0:0.001:max(Arb);
Vq = interp1 (Arb, V, xq);
plot (xq, Vq);
However, I get this error message:
Error using interp1>reshapeAndSortXandV (line 416)
X must be a vector.
Error in interp1 (line 92)
[X,V,orig_size_v] = reshapeAndSortXandV(varargin{1},varargin{2})
interp1 will use linear interpolation on your data so it won't help you much. One thing you can try is to use a cubic spline with interp1 but again given the nature of the data I don't think it will help much. e.g.
Alternative 1. Cubic Spline
xq = 0:0.001:max(Arb);
Vq = interp1 (Arb, V, xq, 'spline');
plot (xq, Vq);
Alternative 2. Polynomial fit
Another alternative you can try is, polynomial interpolation using polyfit. e.g.
p = polifit(Arb, V, 2); % I think a 2nd order polynomial should do
xq = 0:0.001:max(Arb);
Vq = polyval(p, xq);
plot (xq, Vq);
Alternative 3. Alpha-beta filter
Last but not least, another thing to try is to use an smoothing alpha-beta filter on your V data. One possible implementation can be:
% x is the input data
% a is the "smoothing" factor from [0, 1]
% a = 0 full smoothing
% a = 1 no smoothing
function xflt = alphaBeta(x, a)
xflt = zeros(1,length(x));
xflt(1) = x(1);
a = max(min(a, 1), 0); % Bound coefficient between 0 and 1;
for n = 2:1:length(x);
xflt(n) = a * x(n) + (1 - a) * xflt(n-1);
end
end
Usage:
plot (Arb, alphaBeta(V, 0.65), 'r')
I have two arrays
x = [0 9.8312 77.1256 117.9810 99.9979];
y = [0 2.7545 4.0433 5.3763 5.0504];
figure; plot(x, y)
I want to make more samples of x and y then I interpolated both arrays. I tried this code
xi =min(x):.1:max(x);
yi = interp1(x,y,xi);
figure; plot(xi, yi)
but the trajectory is not same as previous plot. Its because the xi is not fluctuating same as x. How should I interpolate both arrays with same trajectory as original one?
This is an issue because when interpolating, MATLAB is going to ignore the order that you feed in the points and instead just sort them based upon their x location.
Rather than interpolating in x/y coordinates, you can instead use a parameter which represents the cumulative arc length of the line segments and use that to interpolate both the x and y coordinates. This will provide you with an interpolant that respects the order and guarantees monotonicity even for multiple values at the same x coordinate.
% Compute the distance between all points.
distances = sqrt(diff(x).^2 + diff(y).^2);
% Compute the cumulative arclength
t = cumsum([0 distances]);
% Determine the arclengths to interpolate at
tt = linspace(t(1), t(end), 1000);
% Now interpolate x and y at these locations
xi = interp1(t, x, tt);
yi = interp1(t, y, tt);
I have polar coordinates, radius 0.05 <= r <= 1 and 0 ≤ θ ≤ 2π. The radius r is 50 values between 0.05 to 1, and polar angle θ is 24 values between 0 to 2π.
How do I interpolate r = 0.075 and theta = pi/8?
I dunno what you have tried, but interp2 works just as well on polar data as it does on Cartesian. Here is some evidence:
% Coordinates
r = linspace(0.05, 1, 50);
t = linspace(0, 2*pi, 24);
% Some synthetic data
z = sort(rand(50, 24));
% Values of interest
ri = 0.075;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
ZI_manual =
2.737907208525297e-002
ZI_MATLAB =
2.737907208525298e-002
Based on comments you have the following information
%the test point
ri=0.53224;
ti = pi/8;
%formula fo generation of Z
g=9.81
z0=#(r)0.01*(g^2)*((2*pi)^-4)*(r.^-5).*exp(-1.25*(r/0.3).^-4);
D=#(t)(2/pi)*cos(t).^2;
z2=#(r,t)z0(r).*D(t) ;
%range of vlaues of r and theta
r=[0.05,0.071175,0.10132,0.14422,0.2053, 0.29225,0.41602,0.5922,0.84299,1.2];
t=[0,0.62832,1.2566,1.885, 2.5133,3.1416,3.7699,4.3982,5.0265,5.6549,6.2832];
and you want interplation of the test point.
When you sample some data to use them for interpolation you should consider how to sample data according to your requirements.
So when you are sampling a regular grid of polar coordinates ,those coordinates when converted to rectangular will form a circular shape that
most of the points are concentrated in the center of the cricle and when we move from the center to outer regions distance between the points increased.
%regular grid generated for r and t
[THETA R] = meshgrid(t ,r);
% Z for polar grid
Z=z2(R,THETA);
%convert coordinate from polar to cartesian(rectangular):
[X, Y] = pol2cart (THETA, R);
%plot points
plot(X, Y, 'k.');
axis equal
So when you use those point for interpolation the accuracy of the interpolation is greater in the center and lower in the outer regions where the distance between points increased.
In the other word with this sampling method you place more importance on the center region related to outer ones.
To increase accuracy density of grid points (r and theta) should be increased so if length of r and theta is 11 you can create r and theta with size 20 to increase accuracy.
In the other hand if you create a regular grid in rectangular coordinates an equal importance is given to each region . So accuracy of the interpolation will be the same in all regions.
For it first you create a regular grid in the polar coordinates then convert the grid to rectangular coordinates so you can calculate the extents (min max) of the sampling points in the rectangular coordinates. Based on this extents you can create a regular grid in the rectangular coordinates
Regular grid of rectangular coordinates then converted to polar coordinated to get z for grid points using z2 formula.
%get the extent of points
extentX = [min(X(:)) max(X(:))];
extentY = [min(Y(:)) max(Y(:))];
%sample 100 points(or more or less) inside a region specified be the extents
X_samples = linspace(extentX(1),extentX(2),100);
Y_samples = linspace(extentY(1),extentY(2),100);
%create regular grid in rectangular coordinates
[XX YY] = meshgrid(X_samples, Y_samples);
[TT RR] = cart2pol(XX,YY);
Z_rect = z2(RR,TT);
For interpolation of a test point say [ri ti] first it converted to rectangular then using XX ,YY value of z is interpolated
[xi yi] = pol2cart (ti, ri);
z=interp2(XX,YY,Z_rect,xi,yi);
If you have no choice to change how you sample the data and only have a grid of polar points as discussed with #RodyOldenhuis you can do the following:
Interpolate polar coordinates with interp2 (interpolation for gridded data)
this approach is straightforward but has the shortcoming that r and theta are not of the same scale and this may affect the accuracy of the interpolation.
z = interp2(THETA, R, Z, ti, ri)
convert polar coordinates to rectangular and then apply an interpolation method that is for scattered data.
this approach requires more computations but result of it is more reliable.
MATLAB has griddata function that given scattered points first generates a triangulation of points and then creates a regular grid on top of the triangles and interpolates values of grid points.
So if you want to interpolate value of point [ri ti] you should then apply a second interpolation to get value of the point from the interpolated grid.
With the help of some information from spatialanalysisonline and Wikipedia linear interpolation based on triangulation calculated this way (tested in Octave. In newer versions of MATLAB use of triangulation and pointLocation recommended instead of delaunay and tsearch ):
ri=0.53224;
ti = pi/8;
[THETA R] = meshgrid(t ,r);
[X, Y] = pol2cart (THETA, R);
[xi yi] = pol2cart (ti, ri);
%generate triangulation
tri = delaunay (X, Y);
%find the triangle that contains the test point
idx = tsearch (X, Y, tri, xi, yi);
pts= tri(idx,:);
%create a matrix that repesents equation of a plane (triangle) given its 3 points
m=[X(pts);Y(pts);Z(pts);ones(1,3)].';
%calculate z based on det(m)=0;
z= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
More refinement:
Since it is known that the search point is surrounded by 4 points we can use only those point for triangulation. these points form a trapezoid. Each diagonal of trapezoid forms two triangles so using vertices of the trapezoid we can form 4 triangles, also a point inside a trapezoid can lie in at least 2 triangles.
the previous method based on triangulation only uses information from one triangle but here z of the test point can be interpolated two times from data of two triangles and the calculated z values can be averaged to get a better approximation.
%find 4 points surrounding the test point
ft= find(t<=ti,1,'last');
fr= find(cos(abs(diff(t(ft+(0:1))))/2) .* r < ri,1,'last');
[T4 R4] = meshgrid(t(ft+(0:1)), r(fr+(0:1)));
[X4, Y4] = pol2cart (T4, R4);
Z4 = Z(fr+(0:1),ft+(0:1));
%form 4 triangles
tri2= nchoosek(1:4,3);
%empty vector of z values that will be interpolated from 4 triangles
zv = NaN(4,1);
for h = 1:4
pts = tri2(h,:);
% test if the point lies in the triangle
if ~isnan(tsearch(X4(:),Y4(:),pts,xi,yi))
m=[X4(pts) ;Y4(pts) ;Z4(pts); [1 1 1]].';
zv(h)= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
end
end
z= mean(zv(~isnan(zv)))
Result:
True z:
(0.0069246)
Linear Interpolation of (Gridded) Polar Coordinates :
(0.0085741)
Linear Interpolation with Triangulation of Rectangular Coordinates:
(0.0073774 or 0.0060992) based on triangulation
Linear Interpolation with Triangulation of Rectangular Coordinates(average):
(0.0067383)
Conclusion:
Result of interpolation related to structure of original data and the sampling method. If the sampling method matches pattern of original data result of interpolation is more accurate, so in cases that grid points of polar coordinates follow pattern of data result of interpolation of regular polar coordinate can be more reliable. But if regular polar coordinates do not match the structure of data or structure of data is such as an irregular terrain, method of interpolation based on triangulation can better represent the data.
please check this example, i used two for loops, inside for loop i used condition statement, if u comment this condition statement and run the program, u'll get correct answer, after u uncomment this condition statement and run the program, u'll get wrong answer. please check it.
% Coordinates
r = linspace(0.05, 1, 10);
t = linspace(0, 2*pi, 8);
% Some synthetic data
%z = sort(rand(50, 24));
z=zeros();
for i=1:10
for j=1:8
if r(i)<0.5||r(i)>1
z(i,j)=0;
else
z(i,j) = r(i).^3'*cos(t(j)/2);
end
end
end
% Values of interest
ri = 0.55;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
z1 =
0.1632
ZI_manual =
0.1543
ZI_MATLAB =
0.1582
I have a set of 3d data (300 points) that create a surface which looks like two cones or ellipsoids connected to each other. I want a way to find the equation of a best fit ellipsoid or cone to this dataset. The regression method is not important, the easier it is the better. I basically need a way, a code or a matlab function to calculate the constants of the elliptic equation for these data.
You can also try with fminsearch, but to avoid falling on local minima you will need a good starting point given the amount of coefficients (try to eliminate some of them).
Here is an example with a 2D ellipse:
% implicit equation
fxyc = #(x, y, c_) c_(1)*x.^2 + c_(2).*y.^2 + c_(3)*x.*y + c_(4)*x + c_(5).*y - 1; % free term locked to -1
% solution (ellipse)
c_ = [1, 2, 1, 0, 0]; % x^2, y^2, x*y, x, y (free term is locked to -1)
[X,Y] = meshgrid(-2:0.01:2);
figure(1);
fxy = #(x, y) fxyc(x, y, c_);
c = contour(X, Y, fxy(X, Y), [0, 0], 'b');
axis equal;
grid on;
xlabel('x');
ylabel('y');
title('solution');
% we sample the solution to have some data to fit
N = 100; % samples
sample = unique(2 + floor((length(c) - 2)*rand(1, N)));
x = c(1, sample).';
y = c(2, sample).';
x = x + 5e-2*rand(size(x)); % add some noise
y = y + 5e-2*rand(size(y));
fc = #(c_) fxyc(x, y, c_); % function in terms of the coefficients
e = #(c) fc(c).' * fc(c); % squared error function
% we start with a circle
c0 = [1, 1, 0, 0, 0];
copt = fminsearch(e, c0)
figure(2);
plot(x, y, 'rx');
hold on
fxy = #(x, y) fxyc(x, y, copt);
contour(X, Y, fxy(X, Y), [0, 0], 'b');
hold off;
axis equal;
grid on;
legend('data', 'fit');
xlabel('x'); %# Add an x label
ylabel('y');
title('fitted solution');
The matlab function fit can take arbitrary fit expressions. It takes a bit of figuring out the parameters but it can be done.
You would first create a fittype object that has a string representing your expected form. You'll need to work out the expression yourself that best fits what you're expecting, I'm going to take a cone expression from the Mathworld site for an example and rearrange it for z
ft = fittype('sqrt((x^2 + y^2)/c^2) + z_0', ...
'independent', {'x', 'y'}, 'coeff', {'c', 'z_0'});
If it's a simple form matlab can work out which are the variables and which the coefficients but with something more complex like this you'd want to give it a hand.
The 'fitoptions' object holds the configuration for the methods: depending on your dataset you might have to spend some time specifying upper and lower bounds, starting values etc.
fo = fitoptions('Upper', [one, for, each, of, your, coeffs, in, the, order, they, appear, in, the, string], ...
'Lower', [...], `StartPoint', [...]);
then get the output
[fitted, gof] = fit([xvals, yvals], zvals, ft, fo);
Caveat: I've done this plenty with 2D datasets and the docs state it works for three but I haven't done that myself so the above code might not work, check the docs to make sure you've got your syntax right.
It might be worth starting with a simple fit expression, something linear, so that you can get your code working. Then swap the expression out for the cone and play around until you get something that looks like what you're expecting.
After you've got your fit a good trick is that you can use the eval function on the string expression you used in your fit to evaluate the contents of the string as if it was a matlab expression. This means you need to have workspace variables with the same names as the variables and coefficients in your string expression.
After constructing the point cloud I want to get the normal of each point and I used the built-in matlab function surfnorm but its takes a lot of processing time. So if anyone could assist me do this a better and more efficient way.
I wonder if the following code would help you. There are three steps here.
Create 500 randomly spaced points (x,y), and compute a corresponding value z (the height of the surface) for which I chose a sinc like function
Resample the random points using the TriScatteredInterp function - this permits me to obtain points on an evenly sampled grid that "roughly correspond" to the initial surface
Compute the normal to "some points" on that grid (since there are 480x640 points, computing the normal at every point would just create an impossibly dense "forest of vectors"; by sampling "every 10th point" you can actually see what you are doing
The code I used was as follows:
randomX = rand(1,500);
randomY = rand(1,500);
r = 5*sqrt(randomX.^2 + randomY.^2);
randomZ = sin(r) ./ r;
% resample the data:
[xx yy] = meshgrid(linspace(0,1,640), linspace(0,1,480));
F = TriScatteredInterp(randomX(:), randomY(:), randomZ(:));
zz = F(xx, yy);
%% at each point, the normal is cross product of vectors to neighbors
xyz=reshape([xx yy zz],[size(xx) 3]);
xv = 10:30:479; yv = 10:30:639; % points at which to compute normals
dx = xyz(xv, yv+1, :) - xyz(xv, yv, :);
dy = xyz(xv+1, yv, :) - xyz(xv, yv, :);
normVecs = cross(dx, dy); % here we compute the normals.
normVecs = normVecs ./ repmat(sqrt(sum(normVecs.^2, 3)), [1 1 3]);
figure;
quiver3(xx(xv, yv), yy(xv, yv), zz(xv, yv), ...
normVecs(:,:,1), normVecs(:,:,2), normVecs(:,:,3));
axis equal
view([56 22]);
And the resulting plot: