I have an input file foo.txt with the following content:
c1|c2|c3|c4|c5|c6|c7|c8|
00| |1.0|1.0|9|27.0|0||
01|2|3.0|4.0|1|10.0|1|1|
I want to transform it to a Dataframe to perform some Sql queries:
var text = sc.textFile("foo.txt")
var header = text.first()
var rdd = text.filter(row => row != header)
case class Data(c1: String, c2: String, c3: String, c4: String, c5: String, c6: String, c7: String, c8: String)
Until this point everything is ok, the problem comes in the next sentence:
var df = rdd.map(_.split("\\|")).map(p => Data(p(0), p(1), p(2), p(3), p(4), p(5), p(6), p(7))).toDF()
If I try to print df with df.show, I get an error message:
scala> df.show()
java.lang.ArrayIndexOutOfBoundsException: 7
I know that the error might be due to the split sentence. I also tried to split foo.txt using the following syntax:
var df = rdd.map(_.split("""|""")).map(p => Data(p(0), p(1), p(2), p(3), p(4), p(5), p(6), p(7))).toDF()
And then I get something like this:
scala> df.show()
+------+---------+----------+-----------+-----+-----------+----------------+----------------+
| c1 | c2 | c3 | c4 | c5 | c6 | c7 | c8 |
+------+---------+----------+-----------+-----+-----------+----------------+----------------+
| 0| 0| || | || 1| .| 0|
| 0| 1| || 2| || 3| .| 0|
+------+---------+----------+-----------+-----+-----------+----------------+----------------+
Therefore, my question is how can I correctly pass this file to a Dataframe.
EDIT: The error is in the first row due to || field without an intermediate space. This type of field definition depending on the examples works fine or crashes.
This is because one of your lines is shorter than the others:
scala> var df = rdd.map(_.split("\\|")).map(_.length).collect()
df: Array[Int] = Array(7, 8)
You can fill in the rows manually (but you need to handle each case manually):
val df = rdd.map(_.split("\\|")).map{row =>
row match {
case Array(a,b,c,d,e,f,g,h) => Data(a,b,c,d,e,f,g,h)
case Array(a,b,c,d,e,f,g) => Data(a,b,c,d,e,f,g," ")
}
}
scala> df.show()
+---+---+---+---+---+----+---+---+
| c1| c2| c3| c4| c5| c6| c7| c8|
+---+---+---+---+---+----+---+---+
| 00| |1.0|1.0| 9|27.0| 0| |
| 01| 2|3.0|4.0| 1|10.0| 1| 1|
+---+---+---+---+---+----+---+---+
EDIT:
A more generic solution would be something like this:
val df = rdd.map(_.split("\\|", -1)).map(_.slice(0,8)).map(p => Data(p(0), p(1), p(2), p(3), p(4), p(5), p(6), p(7))).toDF()
If you assume that you always have the right number of delimiters, it is safe to use this syntax an truncate the last value.
My suggestion would be to use databrick's csv parser.
Link : https://github.com/databricks/spark-csv
To load your example :
I loaded a sample file similar to yours:
c1|c2|c3|c4|c5|c6|c7|c8|
00| |1.0|1.0|9|27.0|0||
01|2|3.0|4.0|1|10.0|1|1|
To create the dataframe use the below code:
val df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true") // Use first line of all files as header
.option("inferSchema", "true") // Automatically infer data types
.option("delimiter", "|") // default is ","
.load("foo.txt")
.show
I got the below output
+---+---+---+---+---+----+---+----+---+
| c1| c2| c3| c4| c5| c6| c7| c8| |
+---+---+---+---+---+----+---+----+---+
| 0| |1.0|1.0| 9|27.0| 0|null| |
| 1| 2|3.0|4.0| 1|10.0| 1| 1| |
+---+---+---+---+---+----+---+----+---+
This way you do not have to bother about parsing the file yourself. You get a dataframe directly
Related
I am a new developer on Scala and I met some problems to write a simple code on Spark Scala. I have this DF that I get after reading a parquet file :
ID Timestamp
1 0
1 10
1 11
2 20
3 15
And what I want is to create a DF result from the first DF (if the ID = 2 for example, the timestamp should be multiplied by two). So, I created a new class :
case class OutputData(id: bigint, timestamp:bigint)
And here is my code :
val tmp = spark.read.parquet("/user/test.parquet").select("id", "timestamp")
val outputData:OutputData = tmp.map(x:Row => {
var time_result
if (x.getString("id") == 2) {
time_result = x.getInt(2)* 2
}
if (x.getString("id") == 1) {
time_result = x.getInt(2) + 10
}
OutputData2(x.id, time_result)
})
case class OutputData2(id: bigint, timestamp:bigint)
Can you help me please ?
To make the implementation easier, you can cast your df using a case class, the process that Dataset with object notation instead of access to your row each time that you want the value of some element. Apart of that, based on your input and output will take have same format you can use same case class instead of define 2.
Code looks like:
// Sample intput data
val df = Seq(
(1, 0L),
(1, 10L),
(1, 11L),
(2, 20L),
(3, 15L)
).toDF("ID", "Timestamp")
df.show()
// Case class as helper
case class OutputData(ID: Integer, Timestamp: Long)
val newDF = df.as[OutputData].map(record=>{
val newTime = if(record.ID == 2) record.Timestamp*2 else record.Timestamp // identify your id and apply logic based on that
OutputData(record.ID, newTime)// return same format with updated values
})
newDF.show()
The output of above code:
// original
+---+---------+
| ID|Timestamp|
+---+---------+
| 1| 0|
| 1| 10|
| 1| 11|
| 2| 20|
| 3| 15|
+---+---------+
// new one
+---+---------+
| ID|Timestamp|
+---+---------+
| 1| 0|
| 1| 10|
| 1| 11|
| 2| 40|
| 3| 15|
+---+---------+
I have an encoded dataframe and I managed to get it decoded using following code in PySpark. Is there any simple way where I can have an additional column in the dataframe itself through Scala/PySpark?
import base64
import numpy as np
df = spark.read.parquet("file_path")
encodedColumn = base64.decodestring(df.take(1)[0].column2)
t1 = np.frombuffer(encodedColumn ,dtype='<f4')
I looked up multiple similar questions, but couldnt get them to work.
Edit:
Got it working with help from a colleague.
def binaryToFloatArray(stringValue: String): Array[Float] = {
val t:Array[Byte] = Base64.getDecoder().decode(stringValue)
val b = ByteBuffer.wrap(t).order(ByteOrder.LITTLE_ENDIAN).asFloatBuffer()
val copy = new Array[Float](2048)
b.get(copy)
return copy
}
val binaryToFloatArrayUDF = udf(binaryToFloatArray _)
val finalResultDf = dftest.withColumn("myFloatArray", binaryToFloatArrayUDF(col("_2"))).drop("_2")
You have base64 and unbase64 functions for this.
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=streaming#pyspark.sql.functions.base64
You could
from pyspark.sql.functions import unbase64,base64
got = spark.createDataFrame([(1, "Jon"), (2, "Danny"), (3, "Tyrion")], ("id", "name"))
+---+------+
| id| name|
+---+------+
| 1| Jon|
| 2| Danny|
| 3|Tyrion|
+---+------+
encoded_got = got.withColumn('encoded_base64_name', base64(got.name))
+---+------+-------------------+
| id| name|encoded_base64_name|
+---+------+-------------------+
| 1| Jon| Sm9u|
| 2| Danny| RGFubnk=|
| 3|Tyrion| VHlyaW9u|
+---+------+-------------------+
decoded_got = encoded_got.withColumn('decoded_base64', unbase64(encoded_got.encoded_base64).cast("string"))
# Need to use cast("string") to convert from binary to string
+---+------+--------------+--------------+
| id| name|encoded_base64|decoded_base64|
+---+------+--------------+--------------+
| 1| Jon| Sm9u| Jon|
| 2| Danny| RGFubnk=| Danny|
| 3|Tyrion| VHlyaW9u| Tyrion|
+---+------+--------------+--------------+
I'm trying to create a data frame on a text file. For a sample input (Input1)
below Code is working fine
Input1
1,5
2,6
3,7
4,8
Output1
+---+----+
| id|name|
+---+----+
| 1| 5|
| 2| 6|
| 3| 7|
| 4| 8|
+---+----+
However when I changed the input(Input2), I'm not getting any output.
Input2
1,"a,b,c"
2,"d,e,f"
3,"a,b,c"
4,"a,d,f"
Output2
+---+----+
| id|name|
+---+----+
+---+----+
Code
{
val input = sc.textFile(inputFile).map(x=>x.split(",")).collect {
case Array(id,name) => Record(id.toInt, name)
}
input.toDF().show()
}
case class Record(id: Int, name: String)
Expected output format for Input2
+---+-----+------+-----+
| id|name1| name2|name3|
+---+-----+------+-----+
| 1| a| b| c|
| 2| d| e| d|
| 3| a| b| c|
| 4| a| d| f|
+---+-----+------+-----+
I should make changes to the code and case class as well so that compiler understands the data format for Input2, but I'm not getting what changes I need to do. Please advice.
Assuming you are using Spark2, you can simply do
val df = spark.read.csv(inputFile)
And you can split apart the second column in following steps.
At the moment, you're trying to read an entire line containing more than one comma, and only matching on an Array of two elements
You are trying to make the first digit as id column and rest of the comma separated chars inside inverted comma as name column. For that you have to change a little bit of your logic and you should be fine as below
val input = sc.textFile(inputFile).map(x=>x.split(",")).map(x => Record(x.head.toInt, x.tail.mkString(",")))
input.toDF().show()
and of course case class is as you have
case class Record(id: Int, name: String)
You should have following dataframe
+---+-------+
| id| name|
+---+-------+
| 1|"a,b,c"|
| 2|"d,e,f"|
| 3|"a,b,c"|
| 4|"a,d,f"|
+---+-------+
If you don't want the inverted comma you can add replace api as
val input = sc.textFile(inputFile).map(x=>x.replace("\"", "").split(",")).map(x => Record(x.head.toInt, x.tail.mkString(",")))
input.toDF().show()
you should have
+---+-----+
| id| name|
+---+-----+
| 1|a,b,c|
| 2|d,e,f|
| 3|a,b,c|
| 4|a,d,f|
+---+-----+
I hope the answer is helpful.
By the way its better to use sqlContext to read such files where you want to ignore the commas inside inverted commas.
sqlContext.read.format(inputFile).toDF("id", "name").show(false)
you should have above output dataframe
I tried with the below code and got the output as per the need.
{
val input = sc.textFile(inputFile).map(x=>x.replaceAll("\"",""))
val input1 = input.map(x=>x.split(",")).collect { case Array(id,name,name1, name2) => Record(id.toInt, name, name1, name2) }
}
case class Record(id: Int, name: String, name1 : String, name2 : String)
I am trying to concat multiple columns in spark using concat function.
For example below is the table for which I have to add new concatenated column
table - **t**
+---+----+
| id|name|
+---+----+
| 1| a|
| 2| b|
+---+----+
and below is the table which has the information about which columns are to be concatenated for given id (for id 1 column id and name needs to be concatenated and for id 2 only id)
table - **r**
+---+-------+
| id| att |
+---+-------+
| 1|id,name|
| 2| id |
+---+-------+
if I join the two tables and do something like below, I am able to concat but not based on the table r (as the new column is having 1,a for first row but for second row it should be 2 only)
t.withColumn("new",concat_ws(",",t.select("att").first.mkString.split(",").map(c => col(c)): _*)).show
+---+----+-------+---+
| id|name| att |new|
+---+----+-------+---+
| 1| a|id,name|1,a|
| 2| b| id |2,b|
+---+----+-------+---+
I have to apply filter before the select in the above query, but I am not sure how to do that in withColumn for each row.
Something like below, if that is possible.
t.withColumn("new",concat_ws(",",t.**filter**("id="+this.id).select("att").first.mkString.split(",").map(c => col(c)): _*)).show
As it will require to filter each row based on the id.
scala> t.filter("id=1").select("att").first.mkString.split(",").map(c => col(c))
res90: Array[org.apache.spark.sql.Column] = Array(id, name)
scala> t.filter("id=2").select("att").first.mkString.split(",").map(c => col(c))
res89: Array[org.apache.spark.sql.Column] = Array(id)
Below is the final required result.
+---+----+-------+---+
| id|name| att |new|
+---+----+-------+---+
| 1| a|id,name|1,a|
| 2| b| id |2 |
+---+----+-------+---+
We can use UDF
Requirements for this logic to work.
The column name of your table t should be in same order as it comes in col att of table r
scala> input_df_1.show
+---+----+
| id|name|
+---+----+
| 1| a|
| 2| b|
+---+----+
scala> input_df_2.show
+---+-------+
| id| att|
+---+-------+
| 1|id,name|
| 2| id|
+---+-------+
scala> val join_df = input_df_1.join(input_df_2,Seq("id"),"inner")
join_df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 1 more field]
scala> val req_cols = input_df_1.columns
req_cols: Array[String] = Array(id, name)
scala> def new_col_udf = udf((cols : Seq[String],row : String,attr : String) => {
| val row_values = row.split(",")
| val attrs = attr.split(",")
| val req_val = attrs.map{at =>
| val index = cols.indexOf(at)
| row_values(index)
| }
| req_val.mkString(",")
| })
new_col_udf: org.apache.spark.sql.expressions.UserDefinedFunction
scala> val intermediate_df = join_df.withColumn("concat_column",concat_ws(",",'id,'name)).withColumn("new_col",new_col_udf(lit(req_cols),'concat_column,'att))
intermediate_df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 3 more fields]
scala> val result_df = intermediate_df.select('id,'name,'att,'new_col)
result_df: org.apache.spark.sql.DataFrame = [id: int, name: string ... 2 more fields]
scala> result_df.show
+---+----+-------+-------+
| id|name| att|new_col|
+---+----+-------+-------+
| 1| a|id,name| 1,a|
| 2| b| id| 2|
+---+----+-------+-------+
Hope it answers your question.
This may be done in a UDF:
val cols: Seq[Column] = dataFrame.columns.map(x => col(x)).toSeq
val indices: Seq[String] = dataFrame.columns.map(x => x).toSeq
val generateNew = udf((values: Seq[Any]) => {
val att = values(indices.indexOf("att")).toString.split(",")
val associatedIndices = indices.filter(x => att.contains(x))
val builder: StringBuilder = StringBuilder.newBuilder
values.filter(x => associatedIndices.contains(values.indexOf(x)))
values.foreach{ v => builder.append(v).append(";") }
builder.toString()
})
val dfColumns = array(cols:_*)
val dNew = dataFrame.withColumn("new", generateNew(dfColumns))
This is just a sketch, but the idea is that you can pass a sequence of items to the user defined function, and select the ones that are needed dynamically.
Note that there are additional types of collection/maps that you can pass - for example How to pass array to UDF
I am trying to take my input data:
A B C
--------------
4 blah 2
2 3
56 foo 3
And add a column to the end based on whether B is empty or not:
A B C D
--------------------
4 blah 2 1
2 3 0
56 foo 3 1
I can do this easily by registering the input dataframe as a temp table, then typing up a SQL query.
But I'd really like to know how to do this with just Scala methods and not having to type out a SQL query within Scala.
I've tried .withColumn, but I can't get that to do what I want.
Try withColumn with the function when as follows:
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._ // for `toDF` and $""
import org.apache.spark.sql.functions._ // for `when`
val df = sc.parallelize(Seq((4, "blah", 2), (2, "", 3), (56, "foo", 3), (100, null, 5)))
.toDF("A", "B", "C")
val newDf = df.withColumn("D", when($"B".isNull or $"B" === "", 0).otherwise(1))
newDf.show() shows
+---+----+---+---+
| A| B| C| D|
+---+----+---+---+
| 4|blah| 2| 1|
| 2| | 3| 0|
| 56| foo| 3| 1|
|100|null| 5| 0|
+---+----+---+---+
I added the (100, null, 5) row for testing the isNull case.
I tried this code with Spark 1.6.0 but as commented in the code of when, it works on the versions after 1.4.0.
My bad, I had missed one part of the question.
Best, cleanest way is to use a UDF.
Explanation within the code.
// create some example data...BY DataFrame
// note, third record has an empty string
case class Stuff(a:String,b:Int)
val d= sc.parallelize(Seq( ("a",1),("b",2),
("",3) ,("d",4)).map { x => Stuff(x._1,x._2) }).toDF
// now the good stuff.
import org.apache.spark.sql.functions.udf
// function that returns 0 is string empty
val func = udf( (s:String) => if(s.isEmpty) 0 else 1 )
// create new dataframe with added column named "notempty"
val r = d.select( $"a", $"b", func($"a").as("notempty") )
scala> r.show
+---+---+--------+
| a| b|notempty|
+---+---+--------+
| a| 1| 1111|
| b| 2| 1111|
| | 3| 0|
| d| 4| 1111|
+---+---+--------+
How about something like this?
val newDF = df.filter($"B" === "").take(1) match {
case Array() => df
case _ => df.withColumn("D", $"B" === "")
}
Using take(1) should have a minimal hit