Thanks again for taking the time to answer this post !
Quick question :
In a Clockwork Reccurent Neural Network (RNN), (here is the documentation), it seems to me that a TanH-activated output layer would suffer from extreme load from so many connections, and alway output near 1 , or am I mistaken ?
Let's say we have a CW-RNN with, for the hidden layer, 4 modules of 50 neurons each.
Even if these modules have a different clock rate, obviously sometimes, more than 1 module will activate & output something else that 0 : Thus, the output layer may output 1 because of so many inputs.
Is there anything I am missing in the CW-RNN concept ?
I know about weight initialization, but i'm just wondering if I am missing a piece of the puzzle.
Related
I'm writing a program to predict when will something happens. I don't know which activation function to get output in day of week (1-7).
I tried sigmoid function but i need to input the predicted day and it output probability of it, I don't want it to be this way.
I expect the activation function returning 0 to infinite, is ReLU the best activation function for this task?
EDIT:
also, what if i wanted output more than 7 days, for example, x will hapen in 9th day from today, or 15th day from today, etc? I'm looking for dynamic ways to do this
What you are trying to do is solving a classification problem with a regression approach. That's at least unconventional.
You can use any activation function you want and define your output as you want. E.g. linear, relu with output range from 1 to 7 or something between -1(or 0) and 1 like tanh or sigmoid and map the output (-1 -> 1; -0.3 -> 2; ...).
The problem for you will be that you get a floatingpoint number as a result. So your model not only has to learn how to classify correctly but also how to predict the (allmost) exact number you want in your output neuron. That makes the problem more complicated than it has to be. With a model like that it also will be likley that for some outlier datapoints you might get unexpected return values like 0, -1 or 8. What do you do then?
To sum it up: Listen to #venkata krishnan, use softmax and seven output neurons and map this result to a number between 1 and 7 outside the neural network if you have to.
EDIT
What comes to my mind after reading the comments again would be a mix of what you want and what you should do.
You could try to make the second last layer a 7 neuron softmax layer and map those output to a single neuron in the last layer.
Niether did i ever try that nor have i ever read about something like that so i can't tell you if thats a good idea, likely not, but you might consider it worth a try.
I want to add onto the point of #venkata krishnan, which raises a valid point in your problem setting. You will find an answer to your original question further down, but I strongly suggeste you read the following comment first.
Generally, you want to discern between categorical, ordinal and interval variables. I have given a relatively lengthy explanation in a different answer on Stackoverflow, it might be helpful to understand this concept in more detail.
In your scenario, you mostly want to have an understanding of "how wrong" you are. Of course, it is perfectly reasonable to assume what you are doing and interpret it as a interval variable, and therefore have an assumed ordering (and a distance) between different values.
What is problematic, though, is the fact that you are assuming a continuous space on a discrete variable. E.g., it does not make any sense to interpret the output of 4.3, since you can only tell between 4 (Friday, assuming you start numbering your days at 0), or 5 (Saturday). Any value in between would have to be rounded, which is perfectly fine - until you want to perform backpropagation on this loss.
It is problematic, because you are essentially introducing a non-convex and non-continous function, no matter how you "round" your values. Again, to exemplify this, you could assume to round to the nearest number; then, at the value of 4.5, you would see a sudden increase in the loss, which is non-differentialbe, and will therefore put a hard time on your optimizer, potentially limiting convergence of your system.
If, instead, you utilize several output neurons, as suggested by #venkata krishnan, you might lose the information of distance (how many days you are off) on paper, but you can of course still interpret your loss in any way you like. This would certainly be the better option for a discrete-valued variable.
To answer your original question: I personally would make sure that your loss function is bounded both in the upper and lower level, as you could otherwise have undefined/inconsistent loss values, that might lead to subpar optimization. One way to do this is to re-scale a Sigmoid function (the co-domain of sigmoid(R) is [0,1]. Eventually, you can then just multiply your output by 6, to get a value range that is [0,6], and could (after rounding) cover all the values you want.
As far I know, there is no such thing like an activation function which will yield 0 to infinite. You can apply 7 output nodes with a "Softmax" activation function which will return the probability. There is another solution which may work. You can you 3 output nodes with "Binary" activation function which will return either 0 or 1. That means you can have 8 different outputs with only 3 nodes which are 000, 001, 010, 011, 100, 101, 110 and 111. You can use 7 of them.
I'm playing with a neural network I implemented myself: it's a trivial forward network using RPROP as a learning algorithm as the only "plus" compared to the basic design.
The network scores decently when I test it against MNIST or when I attempt at image compression, but when I try to model something as simple as the XOR function, sometimes during learning it gets trapped into a local minima, and outputs the following truth table:
0 XOR 0 = 1.4598413968251171e-171
1 XOR 0 = 0.9999999999999998
0 XOR 1 = 0.9999999999999998
1 XOR 1 = 0.5
Often the result after the training is correct, but sometimes 1 XOR 1 outputs 0.5 instead of 1 as it should. It does not really always happens with XOR(1,1), but with other inputs as well. Being the XOR function a "classical" in the literature of back propagation I wonder what's happening here, especially given that my network appears to learn more complex (but perhaps less non-linear) tasks just fine.
My wild guess is that's something wrong with the biases.
Any hint?
Note 1: the network layout above is 2|3|1, but does not change much when I use more hidden units, certain learning attempts still go wrong.
Note 2: I put the implementation into a Gist: https://gist.github.com/antirez/e45939b918868b91ec6fea1d1938db0d
The problem was due to a bug in my implementation: the bias unit of the NN immediately before the output unit was not computed correctly. After fixing the code the XOR function is always computed right.
I have a neural network playing tic-tac-toe. (I know there are other better methods for this, but I want to learn about NN)
So the NN plays against a random AI. First, it should learn to make an allowed move, ie. not choosing a field that is already occupied.
It doesn't get very far with this, however.
When NN chooses an illegal move I optimize the weights such that the distance to another, randomly chosen (legal) field is minimized. (There is one output which should have values between 1 and 9).
My problem is: in changing the weights, a formerly optimized outcome is now also changed. So I have this kind of overfitting: Everytime I backpropagade to optimize the weights for one particular situation, the decision for every other situation becomes worse!
I know I should probably have 9 output neurons instead of 1 and should probably not use a random field as the target, as I assume this can mess things up. I am starting to change this.
Still, the issue seems to remain. Obviously. How can I improve the decision in one situation without forgetting every other situation?
One solution I came up with is to "remember" every game played and optimizing simultaneously over all games played.
However, after a while this becomes very demanding on the computation. Also, it seems to go into the direction of a complete enumartion of all possible board situations. This might be possible for Tic Tac Toe but if I move to another game, say Go, this becomes infeasible.
Where is my mistake? How do I generally tackle this problem? Or where could I read about it? Thanks a lot!
To tackle this problem efficiently, you sould consider Reinforcement Learning methods, instead of what you are currently doing. What your are trying to do is to learn the behaviour of an agent playing Tic Tac Toe. The agent gets a high reward when he wins a game, a high penalty when he loses and an even higher penalty when he performs an illegal move. My guess is that using methods such as Q-learning with neural networks will work perfectly, even with very simple neural nets. One useful paper on the topic could be: https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf, or earlier papers on TD-Gammon (I think you can easily find tutorials on the topic using the keywords TD-Gammon, Q-learning, ...).
By the way, a more down-to-earth answer to why your model might not work is that you are seemingly using one single unit to represent categorical outputs: if you want to represent an integer between 1 and N, you should represent it using N output neurons with values between 0 and 1, and pick the neuron with the highest value as your answer. Using a single neuron with value between 1 and 9 creates an unatural assymetry between your outputs, and, for example, when the expected value is 3, your network gets a higher error for outputing a 9 than a 2. This should obviously not be the case: all wrong answers are equally wrong.
Hope this helps,
Best
Just starting to play around with Neural Networks for fun after playing with some basic linear regression. I am an English teacher so don't have a math background and trying to read a book on this stuff is way over my head. I thought this would be a better avenue to get some basic questions answered (even though I suspect there is no easy answer). Just looking for some general guidance put in layman's terms. I am using a trial version of an Excel Add-In called NEURO XL. I apologize if these questions are too "elementary."
My first project is related to predicting a student's Verbal score on the SAT based on a number of test scores, GPA, practice exam scores, etc. as well as some qualitative data (gender: M=1, F=0; took SAT prep class: Y=1, N=0; plays varsity sports: Y=1, N=0).
In total, I have 21 variables that I would like to feed into the network, with the output being the actual score (200-800).
I have 9000 records of data spanning many years/students. Here are my questions:
How many records of the 9000 should I use to train the network?
1a. Should I completely randomize the selection of this training data or be more involved and make sure I include a variety of output scores and a wide range of each of the input variables?
If I split the data into an even number, say 9x1000 (or however many) and created a network for each one, then tested the results of each of these 9 on the other 8 sets to see which had the lowest MSE across the samples, would this be a valid way to "choose" the best network if I wanted to predict the scores for my incoming students (not included in this data at all)?
Since the scores on the tests that I am using as inputs vary in scale (some are on 1-100, and others 1-20 for example), should I normalize all of the inputs to their respective z-scores? When is this recommended vs not recommended?
I am predicting the actual score, but in reality, I'm NOT that concerned about the exact score but more of a range. Would my network be more accurate if I grouped the output scores into buckets and then tried to predict this number instead of the actual score?
E.g.
750-800 = 10
700-740 = 9
etc.
Is there any benefit to doing this or should I just go ahead and try to predict the exact score?
What if ALL I cared about was whether or not the score was above or below 600. Would I then just make the output 0(below 600) or 1(above 600)?
5a. I read somewhere that it's not good to use 0 and 1, but instead 0.1 and 0.9 - why is that?
5b. What about -1(below 600), 0(exactly 600), 1(above 600), would this work?
5c. Would the network always output -1, 0, 1 - or would it output fractions that I would then have to roundup or rounddown to finalize the prediction?
Once I have found the "best" network from Question #3, would I then play around with the different parameters (number of epochs, number of neurons in hidden layer, momentum, learning rate, etc.) to optimize this further?
6a. What about the Activation Function? Will Log-sigmoid do the trick or should I try the other options my software has as well (threshold, hyperbolic tangent, zero-based log-sigmoid).
6b. What is the difference between log-sigmoid and zero-based log-sigmoid?
Thanks!
First a little bit of meta content about the question itself (and not about the answers to your questions).
I have to laugh a little that you say 'I apologize if these questions are too "elementary."' and then proceed to ask the single most thorough and well thought out question I've seen as someone's first post on SO.
I wouldn't be too worried that you'll have people looking down their noses at you for asking this stuff.
This is a pretty big question in terms of the depth and range of knowledge required, especially the statistical knowledge needed and familiarity with Neural Networks.
You may want to try breaking this up into several questions distributed across the different StackExchange sites.
Off the top of my head, some of it definitely belongs on the statistics StackExchange, Cross Validated: https://stats.stackexchange.com/
You might also want to try out https://datascience.stackexchange.com/ , a beta site specifically targeting machine learning and related areas.
That said, there is some of this that I think I can help to answer.
Anything I haven't answered is something I don't feel qualified to help you with.
Question 1
How many records of the 9000 should I use to train the network? 1a. Should I completely randomize the selection of this training data or be more involved and make sure I include a variety of output scores and a wide range of each of the input variables?
Randomizing the selection of training data is probably not a good idea.
Keep in mind that truly random data includes clusters.
A random selection of students could happen to consist solely of those who scored above a 30 on the ACT exams, which could potentially result in a bias in your result.
Likewise, if you only select students whose SAT scores were below 700, the classifier you build won't have any capacity to distinguish between a student expected to score 720 and a student expected to score 780 -- they'll look the same to the classifier because it was trained without the relevant information.
You want to ensure a representative sample of your different inputs and your different outputs.
Because you're dealing with input variables that may be correlated, you shouldn't try to do anything too complex in selecting this data, or you could mistakenly introduce another bias in your inputs.
Namely, you don't want to select a training data set that consists largely of outliers.
I would recommend trying to ensure that your inputs cover all possible values for all of the variables you are observing, and all possible results for the output (the SAT scores), without constraining how these requirements are satisfied.
I'm sure there are algorithms out there designed to do exactly this, but I don't know them myself -- possibly a good question in and of itself for Cross Validated.
Question 3
Since the scores on the tests that I am using as inputs vary in scale (some are on 1-100, and others 1-20 for example), should I normalize all of the inputs to their respective z-scores? When is this recommended vs not recommended?
My understanding is that this is not recommended as the input to a Nerual Network, but I may be wrong.
The convergence of the network should handle this for you.
Every node in the network will assign a weight to its inputs, multiply them by their weights, and sum those products as a core part of its computation.
That means that every node in the network is searching for some coefficients for each of their inputs.
To do this, all inputs will be converted to numeric values -- so conditions like gender will be translated into "0=MALE,1=FEMALE" or something similar.
For example, a node's metric might look like this at a given point in time:
2*ACT_SCORE + 0*GENDER + (-5)*VARISTY_SPORTS ...
The coefficients for each values are exactly what the network is searching for as it converges.
If you change the scale of a value, like ACT_SCORE, you just change the scale of the coefficient that will be found by the reciporical of that scaling factor.
The result should still be the same.
There are other concerns in terms of accuracy (computers have limited capacity to represent small fractions) and speed that may enter this, but not being familiar with NEURO XL, I can't say whether or not they apply for this technology.
Question 4
I am predicting the actual score, but in reality, I'm NOT that concerned about the exact score but more of a range. Would my network be more accurate if I grouped the output scores into buckets and then tried to predict this number instead of the actual score?
This will reduce accuracy, although you should converge to a solution much faster with fewer possible outputs (scores).
Neural Networks actually describe very high-dimensional functions in their input variables.
If you reduce the granularity of that function's output space, you essentially state that you don't care about local minima and maxima in that function, especially around the borders between your output scores.
As a result, you are sacrificing information that may be an essential component of the "true" function that you are searching for.
I hope this has been helpful, but you really should break this question down into its many components and ask them separately on different sites -- potentially some of them do belong here on StackOverflow as well.
I have two distinct (unknown relationship) types of input patterns and I need to design a neural network where I would get an output based on both these patterns. However, I am unsure of how to design such a network.
I am a newbie in NN but I am trying to read as much as I can. In my problem as far as I can understand there are two input matrices of order say 6*1 and an o/p matrix of order 6*1. So how should I start with this? Is it ok to use backpropogation and a single hidden layer?
e.g.->
Input 1 Input 2 Output
0.59 1 0.7
0.70 1 0.4
0.75 1 0.5
0.83 0 0.6
0.91 0 0.8
0.94 0 0.9
How do I decide the order of the weight matrix and the transfer function?
Please help. Any link pertaining to this will also do. Thanks.
The simplest thing to try is to concatenate the 2 input vectors. This way you'll have 1 input vector of length 12, and this becomes a "text-book" learning problem from R^{12} to R^{6}.
The downside of this, is that you lose the information about each 6 inputs coming from a different source, but by your description it doesn't sound like you know much about these sources. Anyways, if you have any special knowledge of the 2 sources, you can use some pre-processing (like subtracting the mean, or dividing by the standard deviation) on each of the sources, to make them more similar, but most learning algorithms should also work OK without it.
As for which algorithm to try, I think the cannonical order is: linear machines (perceptron), then SVM, then multi-layer-networks (trained with backprop). The reason is, the more powerful the machine you use, the better chances you have to fit the train set, but less chances to fit the "true" pattern (overfitting).