I'm writing a program to predict when will something happens. I don't know which activation function to get output in day of week (1-7).
I tried sigmoid function but i need to input the predicted day and it output probability of it, I don't want it to be this way.
I expect the activation function returning 0 to infinite, is ReLU the best activation function for this task?
EDIT:
also, what if i wanted output more than 7 days, for example, x will hapen in 9th day from today, or 15th day from today, etc? I'm looking for dynamic ways to do this
What you are trying to do is solving a classification problem with a regression approach. That's at least unconventional.
You can use any activation function you want and define your output as you want. E.g. linear, relu with output range from 1 to 7 or something between -1(or 0) and 1 like tanh or sigmoid and map the output (-1 -> 1; -0.3 -> 2; ...).
The problem for you will be that you get a floatingpoint number as a result. So your model not only has to learn how to classify correctly but also how to predict the (allmost) exact number you want in your output neuron. That makes the problem more complicated than it has to be. With a model like that it also will be likley that for some outlier datapoints you might get unexpected return values like 0, -1 or 8. What do you do then?
To sum it up: Listen to #venkata krishnan, use softmax and seven output neurons and map this result to a number between 1 and 7 outside the neural network if you have to.
EDIT
What comes to my mind after reading the comments again would be a mix of what you want and what you should do.
You could try to make the second last layer a 7 neuron softmax layer and map those output to a single neuron in the last layer.
Niether did i ever try that nor have i ever read about something like that so i can't tell you if thats a good idea, likely not, but you might consider it worth a try.
I want to add onto the point of #venkata krishnan, which raises a valid point in your problem setting. You will find an answer to your original question further down, but I strongly suggeste you read the following comment first.
Generally, you want to discern between categorical, ordinal and interval variables. I have given a relatively lengthy explanation in a different answer on Stackoverflow, it might be helpful to understand this concept in more detail.
In your scenario, you mostly want to have an understanding of "how wrong" you are. Of course, it is perfectly reasonable to assume what you are doing and interpret it as a interval variable, and therefore have an assumed ordering (and a distance) between different values.
What is problematic, though, is the fact that you are assuming a continuous space on a discrete variable. E.g., it does not make any sense to interpret the output of 4.3, since you can only tell between 4 (Friday, assuming you start numbering your days at 0), or 5 (Saturday). Any value in between would have to be rounded, which is perfectly fine - until you want to perform backpropagation on this loss.
It is problematic, because you are essentially introducing a non-convex and non-continous function, no matter how you "round" your values. Again, to exemplify this, you could assume to round to the nearest number; then, at the value of 4.5, you would see a sudden increase in the loss, which is non-differentialbe, and will therefore put a hard time on your optimizer, potentially limiting convergence of your system.
If, instead, you utilize several output neurons, as suggested by #venkata krishnan, you might lose the information of distance (how many days you are off) on paper, but you can of course still interpret your loss in any way you like. This would certainly be the better option for a discrete-valued variable.
To answer your original question: I personally would make sure that your loss function is bounded both in the upper and lower level, as you could otherwise have undefined/inconsistent loss values, that might lead to subpar optimization. One way to do this is to re-scale a Sigmoid function (the co-domain of sigmoid(R) is [0,1]. Eventually, you can then just multiply your output by 6, to get a value range that is [0,6], and could (after rounding) cover all the values you want.
As far I know, there is no such thing like an activation function which will yield 0 to infinite. You can apply 7 output nodes with a "Softmax" activation function which will return the probability. There is another solution which may work. You can you 3 output nodes with "Binary" activation function which will return either 0 or 1. That means you can have 8 different outputs with only 3 nodes which are 000, 001, 010, 011, 100, 101, 110 and 111. You can use 7 of them.
Related
In the course of testing an algorithm I computed option prices for random input values using the standard pricing function blsprice implemented in MATLAB's Financial Toolbox.
Surprisingly ( at least for me ) ,
the function seems to return negative option prices for certain combinations of input values.
As an example take the following:
> [Call,Put]=blsprice(67.6201,170.3190,0.0129,0.80,0.1277)
Call =-7.2942e-15
Put = 100.9502
If I change time to expiration to 0.79 or 0.81, the value becomes non-negative as I would expect.
Did anyone of you ever experience something similar and can come up with a short explanation why that happens?
I don't know which version of the Financial Toolbox you are using but for me (TB 2007b) it works fine.
When running:
[Call,Put]=blsprice(67.6201,170.3190,0.0129,0.80,0.1277)
I get the following:
Call = 9.3930e-016
Put = 100.9502
Which is indeed positive
Bit late but I have come across things like this before. The small negative value can be attributed to numerical rounding error and / or truncation error within the routine used to compute the cumulative normal distribution.
As you know computers are not perfect and small numerical error always persists in all calculations, in my view therefore the question one should must ask instead is - what is the accuracy of the input parameters being used and therefore what is the error tolerance for outputs.
The way I thought about it when I encountered it before was that, in finance, typical annual stock price return variance are of the order of 30% which means the mean returns are typically sampled with standard error of roughly 30% / sqrt(N) which is roughly of the order of +/- 1% assuming 2 years worth of data (so N = 260 x 2 = 520, any more data you have the other problem of stationarity assumption). Therefore on that basis the answer you got above could have been interpreted as zero given the error tolerance.
Also we typically work to penny / cent accuracy and again on that basis the answer you had could be interpreted as zero.
Just thought I'd give my 2c hope this is helpful in some ways if you are still checking for answers!
I know it sounds strange and that's a bad way to write a question,but let me show you this odd behavior.
as you can see this signal, r5, is nice and clean. exactly what I expected from my simulation.
now look at this:
this is EXACTLY the same simulation,the only difference is that the filter is now not connected. I tried for hours to find a reason,but it seems like a bug.
This is my file, you can test it yourself disconnecting the filter.
----edited.
Tried it with simulink 2014 and on friend's 2013,on two different computers...if Someone can test it on 2015 it would be great.
(attaching the filter to any other r,r1-r4 included ''fixes'' the noise (on ALL r1-r8),I tried putting it on other signals but the noise won't go away).
the expected result is exactly the smooth one, this file showed to be quite robust on other simulations (so I guess the math inside the blocks is good) and this case happens only with one of the two''link number'' (one input on the top left) set to 4,even if a small noise appears with one ''link number'' set to 3.
thanks in advance for any help.
It seems to me that the only thing the filter could affect is the time step used in the integration, assuming you are using a dynamic time step (which is the default). So, my guess is that (if this is not a bug) your system is numerically unstable/chaotic. It could also be related to noise, caused by differentiation. Differentiating noise over a smaller time step mostly makes things even worse.
Solvers such as ode23 and ode45 use a dynamic time step. ode23 compares a second and third order integration and selects the third one if the difference between the two is not too big. If the difference is too big, it does another calculation with a smaller timestep. ode45 does the same with a fourth and fifth order calculation, more accurate, but more sensitive. Instabilities can occur if a smaller time step makes things worse, which could occur if you differentiate noise.
To overcome the problem, try using a fixed time step, change your precision/solver, or better: avoid differentiation, use some type of state estimator to obtain derivatives or calculate analytically.
Just starting to play around with Neural Networks for fun after playing with some basic linear regression. I am an English teacher so don't have a math background and trying to read a book on this stuff is way over my head. I thought this would be a better avenue to get some basic questions answered (even though I suspect there is no easy answer). Just looking for some general guidance put in layman's terms. I am using a trial version of an Excel Add-In called NEURO XL. I apologize if these questions are too "elementary."
My first project is related to predicting a student's Verbal score on the SAT based on a number of test scores, GPA, practice exam scores, etc. as well as some qualitative data (gender: M=1, F=0; took SAT prep class: Y=1, N=0; plays varsity sports: Y=1, N=0).
In total, I have 21 variables that I would like to feed into the network, with the output being the actual score (200-800).
I have 9000 records of data spanning many years/students. Here are my questions:
How many records of the 9000 should I use to train the network?
1a. Should I completely randomize the selection of this training data or be more involved and make sure I include a variety of output scores and a wide range of each of the input variables?
If I split the data into an even number, say 9x1000 (or however many) and created a network for each one, then tested the results of each of these 9 on the other 8 sets to see which had the lowest MSE across the samples, would this be a valid way to "choose" the best network if I wanted to predict the scores for my incoming students (not included in this data at all)?
Since the scores on the tests that I am using as inputs vary in scale (some are on 1-100, and others 1-20 for example), should I normalize all of the inputs to their respective z-scores? When is this recommended vs not recommended?
I am predicting the actual score, but in reality, I'm NOT that concerned about the exact score but more of a range. Would my network be more accurate if I grouped the output scores into buckets and then tried to predict this number instead of the actual score?
E.g.
750-800 = 10
700-740 = 9
etc.
Is there any benefit to doing this or should I just go ahead and try to predict the exact score?
What if ALL I cared about was whether or not the score was above or below 600. Would I then just make the output 0(below 600) or 1(above 600)?
5a. I read somewhere that it's not good to use 0 and 1, but instead 0.1 and 0.9 - why is that?
5b. What about -1(below 600), 0(exactly 600), 1(above 600), would this work?
5c. Would the network always output -1, 0, 1 - or would it output fractions that I would then have to roundup or rounddown to finalize the prediction?
Once I have found the "best" network from Question #3, would I then play around with the different parameters (number of epochs, number of neurons in hidden layer, momentum, learning rate, etc.) to optimize this further?
6a. What about the Activation Function? Will Log-sigmoid do the trick or should I try the other options my software has as well (threshold, hyperbolic tangent, zero-based log-sigmoid).
6b. What is the difference between log-sigmoid and zero-based log-sigmoid?
Thanks!
First a little bit of meta content about the question itself (and not about the answers to your questions).
I have to laugh a little that you say 'I apologize if these questions are too "elementary."' and then proceed to ask the single most thorough and well thought out question I've seen as someone's first post on SO.
I wouldn't be too worried that you'll have people looking down their noses at you for asking this stuff.
This is a pretty big question in terms of the depth and range of knowledge required, especially the statistical knowledge needed and familiarity with Neural Networks.
You may want to try breaking this up into several questions distributed across the different StackExchange sites.
Off the top of my head, some of it definitely belongs on the statistics StackExchange, Cross Validated: https://stats.stackexchange.com/
You might also want to try out https://datascience.stackexchange.com/ , a beta site specifically targeting machine learning and related areas.
That said, there is some of this that I think I can help to answer.
Anything I haven't answered is something I don't feel qualified to help you with.
Question 1
How many records of the 9000 should I use to train the network? 1a. Should I completely randomize the selection of this training data or be more involved and make sure I include a variety of output scores and a wide range of each of the input variables?
Randomizing the selection of training data is probably not a good idea.
Keep in mind that truly random data includes clusters.
A random selection of students could happen to consist solely of those who scored above a 30 on the ACT exams, which could potentially result in a bias in your result.
Likewise, if you only select students whose SAT scores were below 700, the classifier you build won't have any capacity to distinguish between a student expected to score 720 and a student expected to score 780 -- they'll look the same to the classifier because it was trained without the relevant information.
You want to ensure a representative sample of your different inputs and your different outputs.
Because you're dealing with input variables that may be correlated, you shouldn't try to do anything too complex in selecting this data, or you could mistakenly introduce another bias in your inputs.
Namely, you don't want to select a training data set that consists largely of outliers.
I would recommend trying to ensure that your inputs cover all possible values for all of the variables you are observing, and all possible results for the output (the SAT scores), without constraining how these requirements are satisfied.
I'm sure there are algorithms out there designed to do exactly this, but I don't know them myself -- possibly a good question in and of itself for Cross Validated.
Question 3
Since the scores on the tests that I am using as inputs vary in scale (some are on 1-100, and others 1-20 for example), should I normalize all of the inputs to their respective z-scores? When is this recommended vs not recommended?
My understanding is that this is not recommended as the input to a Nerual Network, but I may be wrong.
The convergence of the network should handle this for you.
Every node in the network will assign a weight to its inputs, multiply them by their weights, and sum those products as a core part of its computation.
That means that every node in the network is searching for some coefficients for each of their inputs.
To do this, all inputs will be converted to numeric values -- so conditions like gender will be translated into "0=MALE,1=FEMALE" or something similar.
For example, a node's metric might look like this at a given point in time:
2*ACT_SCORE + 0*GENDER + (-5)*VARISTY_SPORTS ...
The coefficients for each values are exactly what the network is searching for as it converges.
If you change the scale of a value, like ACT_SCORE, you just change the scale of the coefficient that will be found by the reciporical of that scaling factor.
The result should still be the same.
There are other concerns in terms of accuracy (computers have limited capacity to represent small fractions) and speed that may enter this, but not being familiar with NEURO XL, I can't say whether or not they apply for this technology.
Question 4
I am predicting the actual score, but in reality, I'm NOT that concerned about the exact score but more of a range. Would my network be more accurate if I grouped the output scores into buckets and then tried to predict this number instead of the actual score?
This will reduce accuracy, although you should converge to a solution much faster with fewer possible outputs (scores).
Neural Networks actually describe very high-dimensional functions in their input variables.
If you reduce the granularity of that function's output space, you essentially state that you don't care about local minima and maxima in that function, especially around the borders between your output scores.
As a result, you are sacrificing information that may be an essential component of the "true" function that you are searching for.
I hope this has been helpful, but you really should break this question down into its many components and ask them separately on different sites -- potentially some of them do belong here on StackOverflow as well.
I'm working on a feed forward artificial neural network (ffann) that will take input in form of a simple calculation and return the result (acting as a pocket calculator). The outcome wont be exact.
The artificial network is trained using genetic algorithm on the weights.
Currently my program gets stuck at a local maximum at:
5-6% correct answers, with 1% error margin
30 % correct answers, with 10% error margin
40 % correct answers, with 20% error margin
45 % correct answers, with 30% error margin
60 % correct answers, with 40% error margin
I currently use two different genetic algorithms:
The first is a basic selection, picking two random from my population, naming the one with best fitness the winner, and the other the loser. The loser receives one of the weights from the winner.
The second is mutation, where the loser from the selection receives a slight modification based on the amount of resulting errors. (the fitness is decided by correct answers and incorrect answers).
So if the network outputs a lot of errors, it will receive a big modification, where as if it has many correct answers, we are close to a acceptable goal and the modification will be smaller.
So to the question: What are ways I can prevent my ffann from getting stuck at local maxima?
Should I modify my current genetic algorithm to something more advanced with more variables?
Should I create additional mutation or crossover?
Or Should I maybe try and modify my mutation variables to something bigger/smaller?
This is a big topic so if I missed any information that could be needed, please leave a comment
Edit:
Tweaking the numbers of the mutation to a more suited value has gotten be a better answer rate but far from approved:
10% correct answers, with 1% error margin
33 % correct answers, with 10% error margin
43 % correct answers, with 20% error margin
65 % correct answers, with 30% error margin
73 % correct answers, with 40% error margin
The network is currently a very simple 3 layered structure with 3 inputs, 2 neurons in the only hidden layer, and a single neuron in the output layer.
The activation function used is Tanh, placing values in between -1 and 1.
The selection type crossover is very simple working like the following:
[a1, b1, c1, d1] // Selected as winner due to most correct answers
[a2, b2, c2, d2] // Loser
The loser will end up receiving one of the values from the winner, moving the value straight down since I believe the position in the array (of weights) matters to how it performs.
The mutation is very simple, adding a very small value (currently somewhere between about 0.01 and 0.001) to a random weight in the losers array of weights, with a 50/50 chance of being a negative value.
Here are a few examples of training data:
1, 8, -7 // the -7 represents + (1+8)
3, 7, -3 // -3 represents - (3-7)
7, 7, 3 // 3 represents * (7*7)
3, 8, 7 // 7 represents / (3/8)
Use a niching techniche in the GA. A useful alternative is niching. The score of every solution (some form of quadratic error, I think) is changed in taking account similarity of the entire population. This maintains diversity inside the population and avoid premature convergence an traps into local optimum.
Take a look here:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.7342
A common problem when using GAs to train ANNs is that the population becomes highly correlated
as training progresses.
You could try increasing mutation chance and/or effect as the error-change decreases.
In English. The population becomes genetically similar due to crossover and fitness selection as a local minim is approached. You can introduce variation by increasing the chance of mutation.
You can do a simple modification to the selection scheme: the population can be viewed as having a 1-dimensional spatial structure - a circle (consider the first and last locations to be adjacent).
The production of an individual for location i is permitted to involve only parents from i's local neighborhood, where the neighborhood is defined as all individuals within distance R of i. Aside from this restriction no changes are made to the genetic system.
It's only one or a few lines of code and it can help to avoid premature convergence.
References:
TRIVIAL GEOGRAPHY IN GENETIC PROGRAMMING (2005) - Lee Spector, Jon Klein
I have several datasets i.e. matrices that have a 2 columns, one with a matlab date number and a second one with a double value. Here an example set of one of them
>> S20_EavesN0x2DEAir(1:20,:)
ans =
1.0e+05 *
7.345016409722222 0.000189375000000
7.345016618055555 0.000181875000000
7.345016833333333 0.000177500000000
7.345017041666667 0.000172500000000
7.345017256944445 0.000168750000000
7.345017465277778 0.000166875000000
7.345017680555555 0.000164375000000
7.345017888888889 0.000162500000000
7.345018104166667 0.000161250000000
7.345018312500001 0.000160625000000
7.345018527777778 0.000158750000000
7.345018736111110 0.000160000000000
7.345018951388888 0.000159375000000
7.345019159722222 0.000159375000000
7.345019375000000 0.000160625000000
7.345019583333333 0.000161875000000
7.345019798611111 0.000162500000000
7.345020006944444 0.000161875000000
7.345020222222222 0.000160625000000
7.345020430555556 0.000160000000000
Now that I have those different sensor values, I need to get them together into a matrix, so that I could perform clustering, neural net and so on, the only problem is, that the sensor data was taken with slightly different timings or timestamps and there is nothing I can do about that from a data collection point of view.
My first thought was interpolation to make one sensor data set fit another one, but that seems like a messy approach and I was thinking maybe I am missing something, a toolbox or function that would enable me to do this quicker without me fiddling around. To even complicate things more, the number of sensors grew over time, therefore I am looking at different start dates as well.
Someone a good idea on how to go about this? Thanks
I think your first thought about interpolation was the correct one, at least if you plan to use NNs. Another option would be to use approaches which are designed to deal with missing data, like http://en.wikipedia.org/wiki/Dempster%E2%80%93Shafer_theory for example.
It's hard to give an answer for the clustering part, because I have no idea what you're looking for in the data.
For the neural network, beside interpolating there are at least two other methods that come to mind:
training separate networks for each matrix
feeding them all together to the same network, with a flag specifying which matrix the data is coming from, i.e. something like: input (timestamp, flag_m1, flag_m2, ..., flag_mN) => target (value) where the flag_m* columns are mutually exclusive boolean values - i.e. flag_mK is 1 iff the line comes from matrix K, 0 otherwise.
These are the only things I can safely say with the amount of information you provided.