Ignite: work with messaging and less dependencies - rest

I'm writing a microservice for an existing Ignite cluster. I need to have basic communications with Ignite Messaging system, and don't need other Ignite capabilities. I don't want to include Ignite libraries as it will bloat my microservice - ignite.zip is about 10 times larger than my server and I only need a small subset of functionality.
How can I send messages to existing Ignite cluster and receive messages from it?
EDIT: Ignite documentation lists REST API as one of ways to use Ignite. I'm not sure how it can be used to work with Ignite messaging - suppose I want to receive message as soon as it becomes available in the Ignite messaging? I don't want to poll for messages, as that's not efficient enough for me. If using REST API, the question becomes: how (if it's possible) to receive message using Ignite REST API from the distributed messaging system?

To do this you need only one JAR - ignite-core, which doesn't have any additional dependencies.
To achieve functionality, you can start a client node in your application and use IgniteMessaging API: https://apacheignite.readme.io/docs/messaging

Related

Could I replace RabbitMQ with native kubernetes messaging queue

I didn't find could we replace rabbitMQ/activeMQ/SQS with native kubernetes messaging queue?
or they are totally different in terms of features?
It is a totally different mechanism.
Kubernetes internal queues is not a real "queues" you can use in external applications, they are a part of internal messaging system and manage only objects which are parts of Kubernetes.
Moreover, Kubernetes doesn't provide any message queue as a service for external apps (except a situation when your app actually service one of K8s objects).
If you are not sure which service is better for your app - try to check queues.io.
That is a list of almost all available MQ engines with some highlights.
If you are referring to the Parallel Processing Using a Work Queue approach, you can technically use any queuing system, because the main logic is in the code used to get the items from the queue, Kubernetes is used only to control the parallelism.
If the idea is to use the queue algorithm used internally by kubernetes. it is not exposed as a a service for external applications, you would have to copy the code and implement in you application.

Application Performance monitoring on Swisscom Application Cloud

I am investigating options for monitoring our installation in Swisscom's cloud-foundry. My objectives are the following:
monitor performance indicators for deployed application (such as cpu, disk, memory)
monitor performance indicators for services (slow queries, number of queries, ideally also some metrics on hitting quotas)
So far, I understand the options are the following (including some BUTs):
I used a very nice TOP cf-plugin (github)
This works very well. It seems that it registers itself to get the required firehose nozzles and consume data.
That is very useful for tracing / ad-hoc monitoring, but not very good for a serious infrastructure monitoring.
Another way I found is to use firehose-syslog solution.
This can be deployed as an app to (as far as I understand) do the job in similar way, as the TOP cf plugin.
The problem is, that it requires registered client, so it can authenticate with the doppler endpoint. For some reason, the top-cf-plugin does that automatically / in another way.
Last option i am considering is to build the monitoring itself to the App (using a special buildpack)
That can be for example done with Datadog. But it seems to also require a dedicated uaa client to register the Nozzle.
I would like to check, if somebody is (was) on the similar road, has some findings.
Eventually I would like to raise the following questions towards the swisscom community support:
is it possible to register uaac client to be able to ingest events through the firehose nozzle from external service? (this requires admin credentials if I was reading correctly)
is there an alternative way to authenticate with the nozzle (for example using a special user and his authentication token?)
is there any alternative to monitor the CF deployments in Swisscom? Eventually, is there a paper, blogpost or other form of documentation, that would be helpful in this respect (also for other users of AppCloud)?
Since it requires admin permissions, we can not give out UAA clients for the firehose.
However, there are different ways to get metrics in context of a user.
CF API
You can obtain basic metrics of a specific app by polling the CF API:
https://apidocs.cloudfoundry.org/5.0.0/apps/get_detailed_stats_for_a_started_app.html
However, since you have to poll (and for each app), it's not the recommended way.
Metrics in syslog drain
CF allows devs to forward their logs to syslog drains; in more recent versions, CF also sends metrics to this syslog drain (see https://docs.cloudfoundry.org/devguide/deploy-apps/streaming-logs.html#container-metrics).
For example, you could use Swisscom's Elasticsearch service to store these metrics and then analyze it using Kibana.
Metrics using loggregator (firehose)
The firehose allows streaming logs to clients for two types of roles:
Streaming all logs to admins (which requires a UAA client with admin permissions) and streaming app logs and metrics to devs with permissions in the app's space. This is also what the cf logs command uses. cf top also works this way (it enumerates all apps and streams the logs of each app).
However, you will find out that most open source tools that leverage the firehose only work in admin mode, since they're written for the platform operator.
Of course you also have the possibility to monitor your app by instrumenting it (white box approach), for example by configuring Spring actuator in a Spring boot app or by including an agent of your favourite APM vendor (Dynatrace, AppDynamics, ...)
I guess this is the most common approach; we've seen a lot of teams having success by instrumenting their applications. Especially since advanced monitoring anyway requires you to create your own metrics as the firehose provided cpu/memory metrics are not that powerful in a microservice world.
However, option 2. would be worth a try as well, especially since the ELK's stack metric support is getting better and better.

How to use kafka and storm on cloudfoundry?

I want to know if it is possible to run kafka as a cloud-native application, and can I create a kafka cluster as a service on Pivotal Web Services. I don't want only client integration, I want to run the kafka cluster/service itself?
Thanks,
Anil
I can point you at a few starting points, there would be some work involved to go from those starting points to something fully functional.
One option is to deploy the kafka cluster on Cloud Foundry (e.g. Pivotal Web Services) using docker images. Spotify has Dockerized kafka and kafka-proxy (including Zookeeper). One thing to keep in mind is that PWS currently doesn't support apps with persistence (although this work is starting) so if you were to go this route right now, you would lose the data in kafka when the application is rolled. Looking at that Spotify repo, it looks like the docker images are generally run without any mounted volumes, so this persistence-less kafka seems like it may be a valid use case (I don't know enough about kafka to say).
The other option is to deploy kafka directly on some IaaS (e.g. AWS) using BOSH. BOSH can be hard if you're seeing it for the first time, but it is the ideal way to deploy any distributed software that you want running on VMs. You will also be able to have persistent volumes attached to your kafka VMs if necessary. Here is a kafka BOSH release which may work.
Once you have your cluster running, you have two ways to integrate your Cloud Foundry applications with it. The simplest is just to provide it to your applications as a "user-provided service", which lets you flow kafka cluster access info to your apps. The alternative would to put a service broker in front of your cluster, which would be especially useful if you have many different people who will be pushing apps that need to talk to the kafka cluster. Rather than you having to manually tell people the access info each time, they can do something simple like cf bind-service SOME_APP YOUR_KAFKA_SERVICE. Here is a kafka service broker along with more info about service brokers in general.
According to the 12-factor app description (https://12factor.net/processes), Kafka should not run as an application on top of Cloud Foundry:
Twelve-factor processes are stateless and share-nothing. Any data that needs to persist must be stored in a stateful backing service, typically a database.
Kafka is often considered a "distributed commit log" and as such carries a large amount of state. Many companies use it to keep all events flowing through their distributed system of micro services for a long (sometimes unlimited) amount of time.
Therefore I would strongly recommend to go for the second option in the accepted answer: Kafka topics should be bound to your applications in the form of stateful services.

Apache Thrift Service Auto Discovery

I want to develop some local network services using apache thrift. There should be multiple services waiting for ONE master to connect to them and use them exclusively until the master releases them. The services are written in multiple languages.
The choice to use thrift was done because I need some simple remote procedure call mechansim for communication between the services that is fast and supports multiple languages. While thrift is good for RPC, I need some mechanism to locate the service TCP addresses and ports via some auto-discovery mechanism before to be able to connect the thrift server/clients with each other without hardwiring the addresses.
What are the possibilities for auto-discovering of such sort of services do I have?
Thanks!
There is nothing which you just plug into your scheme of things. You can build something similar using Apache ZooKeeper. Netflix's curator provides a good set of tools to build this, on top of ZooKeeper. See https://github.com/Netflix/curator

Alternatives to JMS for queuing

We have a REST web service that receives requests from external systems and makes updates to our DB accordingly. I'm looking to implement a caching/queuing solution for the requests that come in, as we've had some DB server challenges lately, and have lost some messages when the DB server went down.
Before I start putting together a simple persistent file-based queue, I'm wanting to see if there are any good alternatives to JMS as it's use is restricted in our environment.
Current platforms:
Jboss 4.3
Richfaces 3.3
Spring 3.0.5
RESTEasy
** UPDATES **
Per skaffman's question below, my requirements for clustering, transactions, etc.
Clustering: Our web and app servers are all clustered, so the queue(s) will need to be able to process items from all cluster nodes. However, our commits are essentially atomic, so ordering and synchronization issues are extremely minimal. Thread and cluster-safety is not really a factor. Separate/Independent queues on each cluster would be sufficient.
Transactions: Again, due to the atomic nature of our data, transactional needs are minmal/not required outside of each individual request.
Security: Moderate concern, but I would anticipate that to be handled by our regular security on the Web Service. I wouldn't anticipate anything reading or writing to the queue(s) other than the web-app itself. That would only be necessary in instances of high volume or when the DB is unavailable.
Thanks,
Mike
For one project we did use a queue (HornetQ) but was integrated in the war and deployable on a Tomcat because the customer did not want Weblogic or JBoss application servers, but if your restricting policy goes to your application architecture as well such solution would be forbidden.
For another project we did not use any JMS implementation and we make the asynchronous implementation by using a message database and the Service Activator of the spring-integration framework for consuming the events.
That way any message publisher just insert a row in a DB table and the Service Activator trigs the event and call any other service (Spring, Web-service, etc...).