Submitting operations in created future - scala

I have a Future lazy val that obtains some object and a function which submits operations in the Future.
class C {
def printLn(s: String) = println(s)
}
lazy val futureC: Future[C] = Future{Thread.sleep(3000); new C()}
def func(s: String): Unit = {
futureC.foreach{c => c.printLn(s)}
}
The problem is when Future is completed it executes operations in reverse order than they have been submited. So for example if I execute sequentialy
func("A")
func("B")
func("C")
I get after Future completion
scala> C
B
A
This order is important for me. Is there a way to preserve this order?
Of course I can use an actor who asks for future and stashing strings while future is not ready, but it seems redundant for me.

lazy val futureC: Future[C]
lazy vals in scala will be compiled in to the code which uses a synchronized block for thread safety.
Here when the func(A) is called, it will obtain the lock for the lazy val and that thread will go to sleep.
Therefore func(B) & func(C) will blocked by the lock.
When those blocked threads are run, the order cannot be guaranteed.
If you do it like below, you'll have the order as you expect. This is because the for comprehension creates a flatMap, & map based chain that gets executed sequentially.
lazy val futureC: Future[C] = Future {
Thread.sleep(1000)
new C()
}
def func(s: String) : Future[Unit] = {
futureC.map { c => c.printLn(s) }
}
val x = for {
_ <- func("A")
_ <- func("B")
_ <- func("C")
} yield ()
The order preserves even without the lazy keyword. You can remove the lazy keyword unless it is really necessary.
Hope this helps.

You can use Future.traverse to ensure the order of execution.
Something like this.. Im not sure how your func has a reference to the correct futureC, so I moved it inside.
def func(s: String): Future[Unit] = {
lazy val futureC = Future{Thread.sleep(3000); new C()}
futureC.map{c => c.printLn(s)}
}
def traverse[A,B](xs: Seq[A])(fn: A => Future[B]): Future[Seq[B]] =
xs.foldLeft(Future(Seq[B]())) { (acc, item) =>
acc.flatMap { accValue =>
fn(item).map { itemValue =>
accValue :+ itemValue
}
}
}
traverse(Seq("A","B","C"))(func)

Related

Scala Futures for-comprehension with a list of values

I need to execute a Future method on some elements I have in a list simultaneously. My current implementation works sequentially, which is not optimal for saving time. I did this by mapping my list and calling the method on each element and processing the data this way.
My manager shared a link with me showing how to execute Futures simultaneously using for-comprehension but I cannot see/understand how I can implement this with my List.
The link he shared with me is https://alvinalexander.com/scala/how-use-multiple-scala-futures-in-for-comprehension-loop/
Here is my current code:
private def method1(id: String): Tuple2[Boolean, List[MyObject]] = {
val workers = List.concat(idleWorkers, activeWorkers.keys.toList)
var ready = true;
val workerStatus = workers.map{ worker =>
val option = Await.result(method2(worker), 1 seconds)
var status = if (option.isDefined) {
if (option.get._2 == id) {
option.get._1.toString
} else {
"INVALID"
}
} else "FAILED"
val status = s"$worker: $status"
if (option.get._1) {
ready = false
}
MyObject(worker.toString, status)
}.toList.filterNot(s => s. status.contains("INVALID"))
(ready, workerStatus)
}
private def method2(worker: ActorRef): Future[Option[(Boolean, String)]] = Future{
implicit val timeout: Timeout = 1 seconds;
Try(Await.result(worker ? GetStatus, 1 seconds)) match {
case Success(extractedVal) => extractedVal match {
case res: (Boolean, String) => Some(res)
case _ => None
}
case Failure(_) => { None }
case _ => { None }
}
}
If someone could suggest how to implement for-comprehension in this scenario, I would be grateful. Thanks
For method2 there is no need for the Future/Await mix. Just map the Future:
def method2(worker: ActorRef): Future[Option[(Boolean, String)]] =
(worker ? GetStatus).map{
case res: (Boolean, String) => Some(res)
case _ => None
}
For method1 you likewise need to map the result of method2 and do the processing inside the map. This will make workerStatus a List[Future[MyObject]] and means that everything runs in parallel.
Then use Future.sequence(workerStatus) to turn the List[Future[MyObject]] into a Future[List[MyObject]]. You can then use map again to do the filtering/ checking on that List[MyObject]. This will happen when all the individual Futures have completed.
Ideally you would then return a Future from method1 to keep everything asynchronous. You could, if absolutely necessary, use Await.result at this point which would wait for all the asynchronous operations to complete (or fail).

ZIO watch file system events

help me how to organize a directory scan on ZIO. This is my version, but it doesn't track all file creation events (miss some events).
object Main extends App {
val program = for {
stream <- ZIO.succeed(waitEvents)
_ <- stream.run(ZSink.foreach(k => putStrLn(k.map(e => (e.kind(), e.context())).mkString("\n"))))
} yield ()
val managedWatchService = ZManaged.make {
for {
watchService <- FileSystem.default.newWatchService
path = Path("c:/temp")
_ <- path.register(watchService,
StandardWatchEventKinds.ENTRY_CREATE,
StandardWatchEventKinds.ENTRY_DELETE
)
} yield watchService
}(_.close.orDie)
val lookKey = ZManaged.make {
managedWatchService.use(watchService => watchService.take)
}(_.reset)
val waitEvents = ZStream.fromEffect {
lookKey.use(key => key.pollEvents)
}.repeat(Schedule.forever)
override def run(args: List[String]): ZIO[zio.ZEnv, Nothing, ExitCode] =
program
.provideLayer(Console.live ++ Blocking.live ++ Clock.live)
.exitCode
}
Thank you for your advice.
You are forcing your WatchService to shutdown and recreate every time you poll for events. Since that probably involves some system handles it is likely fairly slow so you would probably missing file events that occur in between. More likely you want to produce the WatchService once and then poll it repeatedly. I would suggest something like this instead:
object Main extends App {
val managedWatchService = ZManaged.make {
for {
watchService <- FileSystem.default.newWatchService
path = Path("c:/temp")
_ <- path.register(watchService,
StandardWatchEventKinds.ENTRY_CREATE,
StandardWatchEventKinds.ENTRY_DELETE
)
} yield watchService
}(_.close.orDie)
// Convert ZManaged[R, E, ZStream[R, E, A]] into ZStream[R, E, A]
val waitEvents = ZStream.unwrapManaged(
managedWatchService.mapM(_.take).map { key =>
// Use simple effect composition instead of a managed for readability.
ZStream.repeatEffect(key.pollEvents <* key.reset)
// Optional: Flatten the `List` of values that is returned
.flattenIterables
}
)
val program = waitEvents
.map(e => (e.kind(), e.context()).toString)
.foreach(putStrLn).unit
override def run(args: List[String]): ZIO[zio.ZEnv, Nothing, ExitCode] =
program
.provideLayer(Console.live ++ Blocking.live ++ Clock.live)
.exitCode
}
Also as a side note, when using ZManaged, you probably don't want to do
ZManaged.make(otherManaged.use(doSomething))(tearDown)
because you will cause the finalizers to execute out of order. ZManaged can already handle the ordering of teardown just through normal flatMap composition.
otherManaged.flatMap { other => ZManaged.make(doSomething(other))(tearDown) }

MVar tryPut returns true and isEmpty also returns true

I wrote simple callback(handler) function which i pass to async api and i want to wait for result:
object Handlers {
val logger: Logger = Logger("Handlers")
implicit val cs: ContextShift[IO] =
IO.contextShift(ExecutionContext.Implicits.global)
class DefaultHandler[A] {
val response: IO[MVar[IO, A]] = MVar.empty[IO, A]
def onResult(obj: Any): Unit = {
obj match {
case obj: A =>
println(response.flatMap(_.tryPut(obj)).unsafeRunSync())
println(response.flatMap(_.isEmpty).unsafeRunSync())
case _ => logger.error("Wrong expected type")
}
}
def getResponse: A = {
response.flatMap(_.take).unsafeRunSync()
}
}
But for some reason both tryPut and isEmpty(when i'd manually call onResult method) returns true, therefore when i calling getResponse it sleeps forever.
This is the my test:
class HandlersTest extends FunSuite {
test("DefaultHandler.test") {
val handler = new DefaultHandler[Int]
handler.onResult(3)
val response = handler.getResponse
assert(response != 0)
}
}
Can somebody explain why tryPut returns true, but nothing puts. And what is the right way to use Mvar/channels in scala?
IO[X] means that you have the recipe to create some X. So on your example, yuo are putting in one MVar and then asking in another.
Here is how I would do it.
object Handlers {
trait DefaultHandler[A] {
def onResult(obj: Any): IO[Unit]
def getResponse: IO[A]
}
object DefaultHandler {
def apply[A : ClassTag]: IO[DefaultHandler[A]] =
MVar.empty[IO, A].map { response =>
new DefaultHandler[A] {
override def onResult(obj: Any): IO[Unit] = obj match {
case obj: A =>
for {
r1 <- response.tryPut(obj)
_ <- IO(println(r1))
r2 <- response.isEmpty
_ <- IO(println(r2))
} yield ()
case _ =>
IO(logger.error("Wrong expected type"))
}
override def getResponse: IO[A] =
response.take
}
}
}
}
The "unsafe" is sort of a hint, but every time you call unsafeRunSync, you should basically think of it as an entire new universe. Before you make the call, you can only describe instructions for what will happen, you can't actually change anything. During the call is when all the changes occur. Once the call completes, that universe is destroyed, and you can read the result but no longer change anything. What happens in one unsafeRunSync universe doesn't affect another.
You need to call it exactly once in your test code. That means your test code needs to look something like:
val test = for {
handler <- TestHandler.DefaultHandler[Int]
_ <- handler.onResult(3)
response <- handler.getResponse
} yield response
assert test.unsafeRunSync() == 3
Note this doesn't really buy you much over just using the MVar directly. I think you're trying to mix side effects inside IO and outside it, but that doesn't work. All the side effects need to be inside.

Iterate data source asynchronously in batch and stop while remote return no data in Scala

Let's say we have a fake data source which will return data it holds in batch
class DataSource(size: Int) {
private var s = 0
implicit val g = scala.concurrent.ExecutionContext.global
def getData(): Future[List[Int]] = {
s = s + 1
Future {
Thread.sleep(Random.nextInt(s * 100))
if (s <= size) {
List.fill(100)(s)
} else {
List()
}
}
}
object Test extends App {
val source = new DataSource(100)
implicit val g = scala.concurrent.ExecutionContext.global
def process(v: List[Int]): Unit = {
println(v)
}
def next(f: (List[Int]) => Unit): Unit = {
val fut = source.getData()
fut.onComplete {
case Success(v) => {
f(v)
v match {
case h :: t => next(f)
}
}
}
}
next(process)
Thread.sleep(1000000000)
}
I have mine, the problem here is some portion is more not pure. Ideally, I would like to wrap the Future for each batch into a big future, and the wrapper future success when last batch returned 0 size list? My situation is a little from this post, the next() there is synchronous call while my is also async.
Or is it ever possible to do what I want? Next batch will only be fetched when the previous one is resolved in the end whether to fetch the next batch depends on the size returned?
What's the best way to walk through this type of data sources? Are there any existing Scala frameworks that provide the feature I am looking for? Is play's Iteratee, Enumerator, Enumeratee the right tool? If so, can anyone provide an example on how to use those facilities to implement what I am looking for?
Edit----
With help from chunjef, I had just tried out. And it actually did work out for me. However, there was some small change I made based on his answer.
Source.fromIterator(()=>Iterator.continually(source.getData())).mapAsync(1) (f=>f.filter(_.size > 0))
.via(Flow[List[Int]].takeWhile(_.nonEmpty))
.runForeach(println)
However, can someone give comparison between Akka Stream and Play Iteratee? Does it worth me also try out Iteratee?
Code snip 1:
Source.fromIterator(() => Iterator.continually(ds.getData)) // line 1
.mapAsync(1)(identity) // line 2
.takeWhile(_.nonEmpty) // line 3
.runForeach(println) // line 4
Code snip 2: Assuming the getData depends on some other output of another flow, and I would like to concat it with the below flow. However, it yield too many files open error. Not sure what would cause this error, the mapAsync has been limited to 1 as its throughput if I understood correctly.
Flow[Int].mapConcat[Future[List[Int]]](c => {
Iterator.continually(ds.getData(c)).to[collection.immutable.Iterable]
}).mapAsync(1)(identity).takeWhile(_.nonEmpty).runForeach(println)
The following is one way to achieve the same behavior with Akka Streams, using your DataSource class:
import scala.concurrent.Future
import scala.util.Random
import akka.actor.ActorSystem
import akka.stream._
import akka.stream.scaladsl._
object StreamsExample extends App {
implicit val system = ActorSystem("Sandbox")
implicit val materializer = ActorMaterializer()
val ds = new DataSource(100)
Source.fromIterator(() => Iterator.continually(ds.getData)) // line 1
.mapAsync(1)(identity) // line 2
.takeWhile(_.nonEmpty) // line 3
.runForeach(println) // line 4
}
class DataSource(size: Int) {
...
}
A simplified line-by-line overview:
line 1: Creates a stream source that continually calls ds.getData if there is downstream demand.
line 2: mapAsync is a way to deal with stream elements that are Futures. In this case, the stream elements are of type Future[List[Int]]. The argument 1 is the level of parallelism: we specify 1 here because DataSource internally uses a mutable variable, and a parallelism level greater than one could produce unexpected results. identity is shorthand for x => x, which basically means that for each Future, we pass its result downstream without transforming it.
line 3: Essentially, ds.getData is called as long as the result of the Future is a non-empty List[Int]. If an empty List is encountered, processing is terminated.
line 4: runForeach here takes a function List[Int] => Unit and invokes that function for each stream element.
Ideally, I would like to wrap the Future for each batch into a big future, and the wrapper future success when last batch returned 0 size list?
I think you are looking for a Promise.
You would set up a Promise before you start the first iteration.
This gives you promise.future, a Future that you can then use to follow the completion of everything.
In your onComplete, you add a case _ => promise.success().
Something like
def loopUntilDone(f: (List[Int]) => Unit): Future[Unit] = {
val promise = Promise[Unit]
def next(): Unit = source.getData().onComplete {
case Success(v) =>
f(v)
v match {
case h :: t => next()
case _ => promise.success()
}
case Failure(e) => promise.failure(e)
}
// get going
next(f)
// return the Future for everything
promise.future
}
// future for everything, this is a `Future[Unit]`
// its `onComplete` will be triggered when there is no more data
val everything = loopUntilDone(process)
You are probably looking for a reactive streams library. My personal favorite (and one I'm most familiar with) is Monix. This is how it will work with DataSource unchanged
import scala.concurrent.duration.Duration
import scala.concurrent.Await
import monix.reactive.Observable
import monix.execution.Scheduler.Implicits.global
object Test extends App {
val source = new DataSource(100)
val completed = // <- this is Future[Unit], completes when foreach is done
Observable.repeat(Observable.fromFuture(source.getData()))
.flatten // <- Here it's Observable[List[Int]], it has collection-like methods
.takeWhile(_.nonEmpty)
.foreach(println)
Await.result(completed, Duration.Inf)
}
I just figured out that by using flatMapConcat can achieve what I wanted to achieve. There is no point to start another question as I have had the answer already. Put my sample code here just in case someone is looking for similar answer.
This type of API is very common for some integration between traditional Enterprise applications. The DataSource is to mock the API while the object App is to demonstrate how the client code can utilize Akka Stream to consume the APIs.
In my small project the API was provided in SOAP, and I used scalaxb to transform the SOAP to Scala async style. And with the client calls demonstrated in the object App, we can consume the API with AKKA Stream. Thanks for all for the help.
class DataSource(size: Int) {
private var transactionId: Long = 0
private val transactionCursorMap: mutable.HashMap[TransactionId, Set[ReadCursorId]] = mutable.HashMap.empty
private val cursorIteratorMap: mutable.HashMap[ReadCursorId, Iterator[List[Int]]] = mutable.HashMap.empty
implicit val g = scala.concurrent.ExecutionContext.global
case class TransactionId(id: Long)
case class ReadCursorId(id: Long)
def startTransaction(): Future[TransactionId] = {
Future {
synchronized {
transactionId += transactionId
}
val t = TransactionId(transactionId)
transactionCursorMap.update(t, Set(ReadCursorId(0)))
t
}
}
def createCursorId(t: TransactionId): ReadCursorId = {
synchronized {
val c = transactionCursorMap.getOrElseUpdate(t, Set(ReadCursorId(0)))
val currentId = c.foldLeft(0l) { (acc, a) => acc.max(a.id) }
val cId = ReadCursorId(currentId + 1)
transactionCursorMap.update(t, c + cId)
cursorIteratorMap.put(cId, createIterator)
cId
}
}
def createIterator(): Iterator[List[Int]] = {
(for {i <- 1 to 100} yield List.fill(100)(i)).toIterator
}
def startRead(t: TransactionId): Future[ReadCursorId] = {
Future {
createCursorId(t)
}
}
def getData(cursorId: ReadCursorId): Future[List[Int]] = {
synchronized {
Future {
Thread.sleep(Random.nextInt(100))
cursorIteratorMap.get(cursorId) match {
case Some(i) => i.next()
case _ => List()
}
}
}
}
}
object Test extends App {
val source = new DataSource(10)
implicit val system = ActorSystem("Sandbox")
implicit val materializer = ActorMaterializer()
implicit val g = scala.concurrent.ExecutionContext.global
//
// def process(v: List[Int]): Unit = {
// println(v)
// }
//
// def next(f: (List[Int]) => Unit): Unit = {
// val fut = source.getData()
// fut.onComplete {
// case Success(v) => {
// f(v)
// v match {
//
// case h :: t => next(f)
//
// }
// }
//
// }
//
// }
//
// next(process)
//
// Thread.sleep(1000000000)
val s = Source.fromFuture(source.startTransaction())
.map { e =>
source.startRead(e)
}
.mapAsync(1)(identity)
.flatMapConcat(
e => {
Source.fromIterator(() => Iterator.continually(source.getData(e)))
})
.mapAsync(5)(identity)
.via(Flow[List[Int]].takeWhile(_.nonEmpty))
.runForeach(println)
/*
val done = Source.fromIterator(() => Iterator.continually(source.getData())).mapAsync(1)(identity)
.via(Flow[List[Int]].takeWhile(_.nonEmpty))
.runFold(List[List[Int]]()) { (acc, r) =>
// println("=======" + acc + r)
r :: acc
}
done.onSuccess {
case e => {
e.foreach(println)
}
}
done.onComplete(_ => system.terminate())
*/
}

cache using functional callbacks/ proxy pattern implementation scala

How to implement cache using functional programming
A few days ago I came across callbacks and proxy pattern implementation using scala.
This code should only apply inner function if the value is not in the map.
But every time map is reinitialized and values are gone (which seems obivous.
How to use same cache again and again between different function calls
class Aggregator{
def memoize(function: Function[Int, Int] ):Function[Int,Int] = {
val cache = HashMap[Int, Int]()
(t:Int) => {
if (!cache.contains(t)) {
println("Evaluating..."+t)
val r = function.apply(t);
cache.put(t,r)
r
}
else
{
cache.get(t).get;
}
}
}
def memoizedDoubler = memoize( (key:Int) => {
println("Evaluating...")
key*2
})
}
object Aggregator {
def main( args: Array[String] ) {
val agg = new Aggregator()
agg.memoizedDoubler(2)
agg.memoizedDoubler(2)// It should not evaluate again but does
agg.memoizedDoubler(3)
agg.memoizedDoubler(3)// It should not evaluate again but does
}
I see what you're trying to do here, the reason it's not working is that every time you call memoizedDoubler it's first calling memorize. You need to declare memoizedDoubler as a val instead of def if you want it to only call memoize once.
val memoizedDoubler = memoize( (key:Int) => {
println("Evaluating...")
key*2
})
This answer has a good explanation on the difference between def and val. https://stackoverflow.com/a/12856386/37309
Aren't you declaring a new Map per invocation ?
def memoize(function: Function[Int, Int] ):Function[Int,Int] = {
val cache = HashMap[Int, Int]()
rather than specifying one per instance of Aggregator ?
e.g.
class Aggregator{
private val cache = HashMap[Int, Int]()
def memoize(function: Function[Int, Int] ):Function[Int,Int] = {
To answer your question:
How to implement cache using functional programming
In functional programming there is no concept of mutable state. If you want to change something (like cache), you need to return updated cache instance along with the result and use it for the next call.
Here is modification of your code that follows that approach. function to calculate values and cache is incorporated into Aggregator. When memoize is called, it returns tuple, that contains calculation result (possibly taken from cache) and new Aggregator that should be used for the next call.
class Aggregator(function: Function[Int, Int], cache:Map[Int, Int] = Map.empty) {
def memoize:Int => (Int, Aggregator) = {
t:Int =>
cache.get(t).map {
res =>
(res, Aggregator.this)
}.getOrElse {
val res = function(t)
(res, new Aggregator(function, cache + (t -> res)))
}
}
}
object Aggregator {
def memoizedDoubler = new Aggregator((key:Int) => {
println("Evaluating..." + key)
key*2
})
def main(args: Array[String]) {
val (res, doubler1) = memoizedDoubler.memoize(2)
val (res1, doubler2) = doubler1.memoize(2)
val (res2, doubler3) = doubler2.memoize(3)
val (res3, doubler4) = doubler3.memoize(3)
}
}
This prints:
Evaluating...2
Evaluating...3