General Questions about NeuralNetworks - neural-network

I have some general questions about NNs and their training in hope that you can answer them:
Lets propose, that Ive got an untrained NN with n hidden Layers and m neurons in it. I want to train the network to, eg recognice voice and so words. How can I make this possible when my sound input doesnt always have the same length (eg one is 1 second the other one is 5)? How many layers and what type should my NN be (Recurrent,LSTM,CNNs etc)? Are there any other training algorithms than the normal backpropagation ( I thought about having a NN with just one neuron in each Layer and then let grow new one till the problem could be solved)? And finally is it recommended/helpfull to make connections between the neurons of eg Layer 2 to Layer 4?
Thank you about your help!

This is a perfectly valid question, for your record.
You should definitely use a recurrent network for voice recognition. So that means you output say 1/100 of a second one by one. So for one second, you activate the network 100 times for one second of data.
Using an LSTM will make sure that patterns over large time lags are remembered, so the network will essentially rememember (useful) parts from previous inputs.
How many layers you should use is dependant on what exactly you want to recognize. But because voice recognition is not one of the easiest classification tasks, it will have to be a large deep network (combine convolutional with LSTM).
What you proposed, evolving the network one node by one, is basically called neuroevolution. Libraries such as Neataptic support the evolution of networks towards a certain solution.
Yes, that could definitely help. But this can purely be found out by trial and error.
PS: I strongly recommend to start on an easier task to develop an understanding of neural networks.

Related

Siamese networks: Why does the network to be duplicated?

The DeepFace paper from Facebook uses a Siamese network to learn a metric. They say that the DNN that extracts the 4096 dimensional face embedding has to be duplicated in a Siamese network, but both duplicates share weights. But if they share weights, every update to one of them will also change the other. So why do we need to duplicate them?
Why can't we just apply one DNN to two faces and then do backpropagation using the metric loss? Do they maybe mean this and just talk about duplicated networks for "better" understanding?
Quote from the paper:
We have also tested an end-to-end metric learning ap-
proach, known as Siamese network [8]: once learned, the
face recognition network (without the top layer) is repli-
cated twice (one for each input image) and the features are
used to directly predict whether the two input images be-
long to the same person. This is accomplished by: a) taking
the absolute difference between the features, followed by b)
a top fully connected layer that maps into a single logistic
unit (same/not same). The network has roughly the same
number of parameters as the original one, since much of it
is shared between the two replicas, but requires twice the
computation. Notice that in order to prevent overfitting on
the face verification task, we enable training for only the
two topmost layers.
Paper: https://research.fb.com/wp-content/uploads/2016/11/deepface-closing-the-gap-to-human-level-performance-in-face-verification.pdf
The short answer is that yes, I think that looking at the architecture of the network will help you understand what is going on. You have two networks that are "joined at the hip" i.e. sharing weights. That's what makes it a "Siamese network". The trick is that you want the two images you feed into the network to pass through the same embedding function. So to ensure that this happens both branches of the network need to share weights.
Then we combine the two embeddings into a metric loss (called "contrastive loss" in the image below). And we can back-propagate as normal, we just have two input branches available so that we can feed in two images at a time.
I think a picture is worth a thousand words. So check out how a Siamese network is constructed (at least conceptually) below.
The gradients depend on the activation values. So for each branch gradients will be different and final update could be based on some averaging to share the weights

Use a trained neural network to imitate its training data

I'm in the overtures of designing a prose imitation system. It will read a bunch of prose, then mimic it. It's mostly for fun so the mimicking prose doesn't need to make too much sense, but I'd like to make it as good as I can, with a minimal amount of effort.
My first idea is to use my example prose to train a classifying feed-forward neural network, which classifies its input as either part of the training data or not part. Then I'd like to somehow invert the neural network, finding new random inputs that also get classified by the trained network as being part of the training data. The obvious and stupid way of doing this is to randomly generate word lists and only output the ones that get classified above a certain threshold, but I think there is a better way, using the network itself to limit the search to certain regions of the input space. For example, maybe you could start with a random vector and do gradient descent optimisation to find a local maximum around the random starting point. Is there a word for this kind of imitation process? What are some of the known methods?
How about Generative Adversarial Networks (GAN, Goodfellow 2014) and their more advanced siblings like Deep Convolutional Generative Adversarial Networks? There are plenty of proper research articles out there, and also more gentle introductions like this one on DCGAN and this on GAN. To quote the latter:
GANs are an interesting idea that were first introduced in 2014 by a
group of researchers at the University of Montreal lead by Ian
Goodfellow (now at OpenAI). The main idea behind a GAN is to have two
competing neural network models. One takes noise as input and
generates samples (and so is called the generator). The other model
(called the discriminator) receives samples from both the generator
and the training data, and has to be able to distinguish between the
two sources. These two networks play a continuous game, where the
generator is learning to produce more and more realistic samples, and
the discriminator is learning to get better and better at
distinguishing generated data from real data. These two networks are
trained simultaneously, and the hope is that the competition will
drive the generated samples to be indistinguishable from real data.
(DC)GAN should fit your task quite well.

Neural Network Retraining

I am coding a simple Neural Network, but I have thought of one issue that is bothering me.
This NN is for finding categories in the input. To better understand this, say the categories are "the numbers" (0,1,2...9).
To implement this the output layer is 10 nodes. Say I train this NN with several input -output pairs and save the learned weights somewhere. As the learning process takes quite a lot of time, after that I go and take a break. Come fresh the next day and re-start learning with new input -output pairs. So fair so goo
But what happen if on that time, I decide that I want to recognize hexadecimals (0,1,...9,A,B,,,E,F)... ergo the categories are increasing.
I suspect that would imply changing the structure of the NN and therefore I should retrain the NN from scratch.
Is this so?
Any comment, advice or your share of experience will be greatly appreciated
EDIT: This question has been marked as duplicate. I read the other question and although similar, my question is more concrete. While the other question speaks in generalities and the answer also is quite general- mine is very concrete as I use an example:
If I train a NN to recognize decimal numbers and later on decide to add data to make it recognize hexadecimals, can this be possible? How? Do I have to retrain the whole NN? In other words, does the structure of the NN needs to stay stationary with 10 OR 16 outputs since the beginning?
I would very much appreciate for a concrete answer to this. Thanks
A few considerations
Your training set and testing set should have the same distribution
Unless you have some way of specifying sample weights like some algorithms can you should at all costs avoid training on biased data. This is true for machine learning in general, not only neural networks.
Resuming training from a previous session is equivalent of using good initial values
Technically, you're just using the previous network as initial value instead of a random value. You should keep training in the whole dataset as always, to avoid a biased network.
Short Answer
Yes, you should always retrain your network if by retrain, you mean doing a training routine with the full dataset.
If you just mean retrain as doing a really long training iteration, it isn't your choice anyway. You must always train the network until the training error and testing error (or cross validated error) converge. If you reuse the previously trained network, that will probably happen faster.
You see, this is true no matter what kind of model change. If you change the network architecture, or the dataset, or both (your example), or some other parameter.
Of course, if you change the network architecture, you're going to have a bit of trouble on reusing the previous network. You could reuse the learned parameters from nodes that were kept and randomly initialize the parameters for the new nodes.

Criteria Behind Structuring a Neural Network

I'm just starting with Torch and neural networks and just glancing at a lot of sample code and tutorials, I see a lot of variety in the how people structure their neural networks. There are layers like Linear(), Tanh(), Sigmoid() as well as criterions like MSE, ClassNLL, MultiMargin, etc.
I'm wondering what kind of factors people keep in mind when creating the structure of their network? For example, I know that in a ClassNLLCriterion, you want to have the last layer of your network be a LogSoftMax() layer so that you can input the right log probabilities.
Are there any other general rules or guidelines when it comes to creating these networks?
Thanks
Here is a good webpage which contains the pros and cons of some of the main activation functions;
http://cs231n.github.io/neural-networks-1/#actfun
It can boil down to the problem at hand and knowing what to do when something goes wrong. As an example, if you have a huge dataset and you can't churn through it terribly quickly then a ReLU might be better in order to quickly get to a local minimum. However you could find that some of the ReLU units "die" so you might want to keep a track on the proportion of activated neurons in that particular layer to make sure this hasn't happened.
In terms of criterions, they are also problem specific but a bit less ambiguous. For example, binary cross entropy for binary classification, MSE for regression etc. It really depends on the objective of the whole project.
For the overall network architecture, I personally find it can be a case of trying out different architectures and seeing which ones work and which don't on your test set. If you think that the problem at hand is terribly complex and you need a complex network to solve the problem then you will probably want to try making a very deep network to begin with, then add/remove a few layers at a time to see if you have under/overfitted. As another example, if you are using convolutional network and the input is relatively small then you might try and use a smaller set of convolutional filters to begin with.

Is there a rule/good advice on how big a artificial neural network should be?

My last lecture on ANN's was a while ago but I'm currently facing a project where I would want to use one.
So, the basics - like what type (a mutli-layer feedforward network), trained by an evolutionary algorithm (thats a given by the project), how many input-neurons (8) and how many ouput-neurons (7) - are set.
But I'm currently trying to figure out how many hidden layers I should use and how many neurons in each of these layers (the ea doesn't modify the network itself, but only the weights).
Is there a general rule or maybe a guideline on how to figure this out?
The best approach for this problem is to implement the cascade correlation algorithm, in which hidden nodes are sequentially added as necessary to reduce the error rate of the network. This has been demonstrated to be very useful in practice.
An alternative, of course, is a brute-force test of various values. I don't think simple answers such as "10 or 20 is good" are meaningful because you are directly addressing the separability of the data in high-dimensional space by the basis function.
A typical neural net relies on hidden layers in order to converge on a particular problem solution. A hidden layer of about 10 neurons is standard for networks with few input and output neurons. However, a trial an error approach often works best. Since the neural net will be trained by a genetic algorithm the number of hidden neurons may not play a significant role especially in training since its the weights and biases on the neurons which would be modified by an algorithm like back propogation.
As rcarter suggests, trial and error might do fine, but there's another thing you could try.
You could use genetic algorithms in order to determine the number of hidden layers or and the number of neurons in them.
I did similar things with a bunch of random forests, to try and find the best number of trees, branches, and parameters given to each tree, etc.