Let's say I have the following tuple
(colType, colDocV)
Where colType is a boolean and colDocV is a String
Depending on those two values, I will apply some chunk of code that applies transformations to a Dataframe.
Now, this code works. However, I am not convinced this is the proper way to write functional programming code.
I don't know which of these 3 approaches will improve the quality of the code and remove all if-if else-else :
Should I apply some kind of design pattern and which one?
Should I use some kind of pattern matching?
Should I use some anonymous function?
if (colDocV) {
val newCol = udf(UDFHashCode.udfHashCode).apply(col(columnName))
dataframe.withColumn(columnName, newCol)
} else if (colType.contains("string") || colType.contains("text")) {
val newCol = udf(Entropy.stringEntropyFunc).apply(col(columnName)).cast(DoubleType)
dataframe.withColumn(columnName, newCol)
} else if (colType.contains("date")) {
val newCol = udf(DateUtils.getTimeAsDoubleFunc).apply(col(columnName)).cast(DoubleType)
dataframe.withColumn(columnName, newCol)
} else if (colType.contains("long")) {
dataframe.withColumn(columnName, dataframe(columnName).cast(DoubleType) )
} else {
dataframe.drop(columnName) //Dropping column that cannot be processed
}
You can do this with a match statement and a bunch of regexps.
val str = ".*(?:string|text).*".r
val date = ".*date.*".r
val long = ".*long.*".r
def col(tuple: (Boolean, String)) = tuple match {
case (true, _) => Some(udf(...))
case (_, str()) => Some(udf(...))
case (_, date()) => Some(udf(...))
case (, long()) => Some(udf(...))
case _ => None
}
col(colType -> colDocv)
.fold(dataframe.drop(columnName)) { newCol =>
dataframe.withColumn(columnName, newCol)
}
According to what I understand from your question following can be a solution using match case
def callUdf(colDocV: String, colType: Boolean, dataframe: DataFrame) = (colDocV, colType) match {
case x if (x._1.contains("string") || x._1.contains("text")) => dataframe.withColumn(columnName, udf(Entropy.stringEntropyFunc).apply(col(columnName)).cast(DoubleType))
case x if (x._1.contains("date")) => dataframe.withColumn(columnName, udf(DateUtils.getTimeAsDoubleFunc).apply(col(columnName)).cast(DoubleType))
case x if (x._1.contains("long")) => dataframe.withColumn(columnName, dataframe(columnName).cast(DoubleType) )
case _ => dataframe.drop(columnName)
}
Related
I have a few vals that match for matching values
Here is an example:
val job_ = Try(jobId.toInt) match {
case Success(value) => jobs.findById(value).map(_.id)
.getOrElse( Left(WrongValue("jobId", s"$value is not a valid job id")))
case Failure(_) => jobs.findByName(jobId.toString).map(_.id)
.getOrElse( Left(WrongValue("jobId", s"'$jobId' is not a known job title.")))
}
// Here the value arrives as a string e.i "yes || no || true || or false" then converted to a boolean
val bool_ = bool.toLowerCase() match {
case "yes" => true
case "no" => false
case "true" => true
case "false" => false
case other => Left(Invalid("bool", s"wrong value received"))
}
Note: invalid case is case class Invalid(x: String, xx: String)
above i'm looking for a given job value and checking whether it exist in the db or not,
No I have a few of these and want to add to a list, here is my list val and flatten it:
val errors = List(..all my vals errors...).flatten // <--- my_list_val (how do I include val bool_ and val job_)
if (errors.isEmpty) { do stuff }
My result should contain errors from val bool_ and val job_
THANK!
You need to fix the types first. The type of bool_ is Any. Which does not give you something you can work with.
If you want to use Either, you need to use it everwhere.
Then, the easiest approach would be to use a for comprehension (I am assuming you're dealing with Either[F, T] here, where WrongValue and Invalid are both sub-classes of F and you're not really interested in the errors).
for {
foundJob <- job_
_ <- bool_
} yield {
// do stuff
}
Note, that in Scala >= 2.13 you can use toIntOption when converting the String to Int:
vaj job_: Either[F, T] = jobId.toIntOption match {
case Some(value) => ...
case _ => ...
}
Also, in case expressions, you can use alternatives when you have the same statement for several cases:
val bool_: Either[F, Boolean] = bool.toLowerCase() match {
case "yes" | "true" => Right(true)
case "no" | "false" => Right(false)
case other => Left(Invalid("bool", "wrong value received"))
}
So, according to your question, and your comments, these are the types you're dealing with.
type ID = Long //whatever id is
def WrongValue(x: String, xx: String) :String = "?-?-?"
case class Invalid(x: String, xx: String)
Now let's create a couple of error values.
val job_ :Either[String,ID] = Left(WrongValue("x","xx"))
val bool_ :Either[Invalid,Boolean] = Left(Invalid("x","xx"))
To combine and report them you might do something like this.
val errors :List[String] =
List(job_, bool_).flatMap(_.swap.toOption.map(_.toString))
println(errors.mkString(" & "))
//?-?-? & Invalid(x,xx)
After checking types as #cbley explained. You can just do a filter operation with pattern matching on your list:
val error = List(// your variables ).filter(_ match{
case Left(_) => true
case _ => false
})
Could you please help me in understanding the following method:
def extractGlobalID(custDimIndex :Int)(gaData:DataFrame) : DataFrame = {
val getGlobId = udf[String,Seq[GenericRowWithSchema]](genArr => {
val globId: List[String] =
genArr.toList
.filter(_(0) == custDimIndex)
.map(custDim => custDim(1).toString)
globId match {
case Nil => ""
case x :: _ => x
}
})
gaData.withColumn("globalId", getGlobId('customDimensions))
}
The method applies an UDF to to dataframe. The UDF seems intended to extract a single ID from column of type array<struct>, where the first element of the struct is an index, the second one an ID.
You could rewrite the code to be more readable:
def extractGlobalID(custDimIndex :Int)(gaData:DataFrame) : DataFrame = {
val getGlobId = udf((genArr : Seq[Row]) => {
genArr
.find(_(0) == custDimIndex)
.map(_(1).toString)
.getOrElse("")
})
gaData.withColumn("globalId", getGlobId('customDimensions))
}
or even shorter with collectFirst:
def extractGlobalID(custDimIndex :Int)(gaData:DataFrame) : DataFrame = {
val getGlobId = udf((genArr : Seq[Row]) => {
genArr
.collectFirst{case r if(r.getInt(0)==custDimIndex) => r.getString(1)}
.getOrElse("")
})
gaData.withColumn("globalId", getGlobId('customDimensions))
}
val date2 = Option(LocalDate.parse("2017-02-01"))
case class dummy(val prop:Seq[Test])
case class Test(val s :String,val dt:String)
case class Result(val s :String)
def myFunc:Result = {
val s = "11,22,33"
val t = Test(s,"2017-02-06")
val list = dummy(Seq(t))
val code = Option("22")
val result = code.exists(p => {
list.prop.exists(d => d.s.split(",").contains(p) && (LocalDate.parse(d.dt).compareTo(date2.get)>=0))
})
if (result) {
Result("found")
} else {
Result("Not Found")
}
}
The code determines the result based on condition.
Is there a efficient way to achieve the above in scala using map and avoiding date2.get
You should check pattern matching, as far as i can see, you have several cases:
- Code
- list
- date2
One way to avoid date2.get is this one belows:
(code, list, date2) match {
case (Some(p), dummy(l), Some(d2)) if l.exists(d => d.s.split(",").contains(p) && (LocalDate.parse(d.dt).compareTo(d2) >= 0)) => Result("found")
case (_, _, _) => Result("Not Found")
}
Also i don't know why you want to use map. It seems to me that this is not the proper tool for this job
I have a Seq[String] in Scala, and if the Seq contains certain Strings, I append a relevant message to another list.
Is there a more 'scalaesque' way to do this, rather than a series of if statements appending to a list like I have below?
val result = new ListBuffer[Err]()
val malformedParamNames = // A Seq[String]
if (malformedParamNames.contains("$top")) result += IntegerMustBePositive("$top")
if (malformedParamNames.contains("$skip")) result += IntegerMustBePositive("$skip")
if (malformedParamNames.contains("modifiedDate")) result += FormatInvalid("modifiedDate", "yyyy-MM-dd")
...
result.toList
If you want to use some scala iterables sugar I would use
sealed trait Err
case class IntegerMustBePositive(msg: String) extends Err
case class FormatInvalid(msg: String, format: String) extends Err
val malformedParamNames = Seq[String]("$top", "aa", "$skip", "ccc", "ddd", "modifiedDate")
val result = malformedParamNames.map { v =>
v match {
case "$top" => Some(IntegerMustBePositive("$top"))
case "$skip" => Some(IntegerMustBePositive("$skip"))
case "modifiedDate" => Some(FormatInvalid("modifiedDate", "yyyy-MM-dd"))
case _ => None
}
}.flatten
result.toList
Be warn if you ask for scala-esque way of doing things there are many possibilities.
The map function combined with flatten can be simplified by using flatmap
sealed trait Err
case class IntegerMustBePositive(msg: String) extends Err
case class FormatInvalid(msg: String, format: String) extends Err
val malformedParamNames = Seq[String]("$top", "aa", "$skip", "ccc", "ddd", "modifiedDate")
val result = malformedParamNames.flatMap {
case "$top" => Some(IntegerMustBePositive("$top"))
case "$skip" => Some(IntegerMustBePositive("$skip"))
case "modifiedDate" => Some(FormatInvalid("modifiedDate", "yyyy-MM-dd"))
case _ => None
}
result
Most 'scalesque' version I can think of while keeping it readable would be:
val map = scala.collection.immutable.ListMap(
"$top" -> IntegerMustBePositive("$top"),
"$skip" -> IntegerMustBePositive("$skip"),
"modifiedDate" -> FormatInvalid("modifiedDate", "yyyy-MM-dd"))
val result = for {
(k,v) <- map
if malformedParamNames contains k
} yield v
//or
val result2 = map.filterKeys(malformedParamNames.contains).values.toList
Benoit's is probably the most scala-esque way of doing it, but depending on who's going to be reading the code later, you might want a different approach.
// Some type definitions omitted
val malformations = Seq[(String, Err)](
("$top", IntegerMustBePositive("$top")),
("$skip", IntegerMustBePositive("$skip")),
("modifiedDate", FormatInvalid("modifiedDate", "yyyy-MM-dd")
)
If you need a list and the order is siginificant:
val result = (malformations.foldLeft(List.empty[Err]) { (acc, pair) =>
if (malformedParamNames.contains(pair._1)) {
pair._2 ++: acc // prepend to list for faster performance
} else acc
}).reverse // and reverse since we were prepending
If the order isn't significant (although if the order's not significant, you might consider wanting a Set instead of a List):
val result = (malformations.foldLeft(Set.empty[Err]) { (acc, pair) =>
if (malformedParamNames.contains(pair._1)) {
acc ++ pair._2
} else acc
}).toList // omit the .toList if you're OK with just a Set
If the predicates in the repeated ifs are more complex/less uniform, then the type for malformations might need to change, as they would if the responses changed, but the basic pattern is very flexible.
In this solution we define a list of mappings that take your IF condition and THEN statement in pairs and we iterate over the inputted list and apply the changes where they match.
// IF THEN
case class Operation(matcher :String, action :String)
def processInput(input :List[String]) :List[String] = {
val operations = List(
Operation("$top", "integer must be positive"),
Operation("$skip", "skip value"),
Operation("$modify", "modify the date")
)
input.flatMap { in =>
operations.find(_.matcher == in).map { _.action }
}
}
println(processInput(List("$skip","$modify", "$skip")));
A breakdown
operations.find(_.matcher == in) // find an operation in our
// list matching the input we are
// checking. Returns Some or None
.map { _.action } // if some, replace input with action
// if none, do nothing
input.flatMap { in => // inputs are processed, converted
// to some(action) or none and the
// flatten removes the some/none
// returning just the strings.
Constructing phoneVector:
val phoneVector = (
for (i <- 1 until 20) yield {
val p = killNS(r.get("Phone %d - Value" format(i)))
val t = killNS(r.get("Phone %d - Type" format(i)))
if (p == None) None
else
if (t == None) (p,"Main") else (p,t)
}
).filter(_ != None)
Consider this very simple snippet:
for (pTuple <- phoneVector) {
println(pTuple.getClass.getName)
println(pTuple)
//val pKey = pTuple._1.replaceAll("[^\\d]","")
associate() // stub prints "associate"
}
When I run it, I see output like this:
scala.Tuple2
((609) 954-3815,Mobile)
associate
When I uncomment the line with replaceAll(), compile fails:
....scala:57: value _1 is not a member of Product with Serializable
[error] val pKey = pTuple._1.replaceAll("[^\\d]","")
[error] ^
Why does it not recognize pTuple as a Tuple2 and treat it only as Product
OK, this compiles and produces the desired result. But it's too verbose. Can someone please demonstrate a more concise solution for dealing with this typesafe stuff?
for (pTuple <- phoneVector) {
println(pTuple.getClass.getName)
println(pTuple)
val pPhone = pTuple match {
case t:Tuple2[_,_] => t._1
case _ => None
}
val pKey = pPhone match {
case s:String => s.replaceAll("[^\\d]","")
case _ => None
}
println(pKey)
associate()
}
You can do:
for (pTuple <- phoneVector) {
val pPhone = pTuple match {
case (key, value) => key
case _ => None
}
val pKey = pPhone match {
case s:String => s.replaceAll("[^\\d]","")
case _ => None
}
println(pKey)
associate()
}
Or simply phoneVector.map(_._1.replaceAll("[^\\d]",""))
By changing the construction of phoneVector, as wrick's question implied, I've been able to eliminate the match/case stuff because Tuple is assured. Not thrilled by it, but Change is Hard, and Scala seems cool.
Now, it's still possible to slip a None value into either of the Tuple values. My match/case does not check for that, and I suspect that could lead to a runtime error in the replaceAll call. How is that allowed?
def killNS (s:Option[_]) = {
(s match {
case _:Some[_] => s.get
case _ => None
}) match {
case None => None
case "" => None
case s => s
}
}
val phoneVector = (
for (i <- 1 until 20) yield {
val p = killNS(r.get("Phone %d - Value" format(i)))
val t = killNS(r.get("Phone %d - Type" format(i)))
if (t == None) (p,"Main") else (p,t)
}
).filter(_._1 != None)
println(phoneVector)
println(name)
println
// Create the Neo4j nodes:
for (pTuple <- phoneVector) {
val pPhone = pTuple._1 match { case p:String => p }
val pType = pTuple._2
val pKey = pPhone.replaceAll(",.*","").replaceAll("[^\\d]","")
associate(Map("target"->Map("label"->"Phone","key"->pKey,
"dial"->pPhone),
"relation"->Map("label"->"IS_AT","key"->pType),
"source"->Map("label"->"Person","name"->name)
)
)
}
}