I have a few vals that match for matching values
Here is an example:
val job_ = Try(jobId.toInt) match {
case Success(value) => jobs.findById(value).map(_.id)
.getOrElse( Left(WrongValue("jobId", s"$value is not a valid job id")))
case Failure(_) => jobs.findByName(jobId.toString).map(_.id)
.getOrElse( Left(WrongValue("jobId", s"'$jobId' is not a known job title.")))
}
// Here the value arrives as a string e.i "yes || no || true || or false" then converted to a boolean
val bool_ = bool.toLowerCase() match {
case "yes" => true
case "no" => false
case "true" => true
case "false" => false
case other => Left(Invalid("bool", s"wrong value received"))
}
Note: invalid case is case class Invalid(x: String, xx: String)
above i'm looking for a given job value and checking whether it exist in the db or not,
No I have a few of these and want to add to a list, here is my list val and flatten it:
val errors = List(..all my vals errors...).flatten // <--- my_list_val (how do I include val bool_ and val job_)
if (errors.isEmpty) { do stuff }
My result should contain errors from val bool_ and val job_
THANK!
You need to fix the types first. The type of bool_ is Any. Which does not give you something you can work with.
If you want to use Either, you need to use it everwhere.
Then, the easiest approach would be to use a for comprehension (I am assuming you're dealing with Either[F, T] here, where WrongValue and Invalid are both sub-classes of F and you're not really interested in the errors).
for {
foundJob <- job_
_ <- bool_
} yield {
// do stuff
}
Note, that in Scala >= 2.13 you can use toIntOption when converting the String to Int:
vaj job_: Either[F, T] = jobId.toIntOption match {
case Some(value) => ...
case _ => ...
}
Also, in case expressions, you can use alternatives when you have the same statement for several cases:
val bool_: Either[F, Boolean] = bool.toLowerCase() match {
case "yes" | "true" => Right(true)
case "no" | "false" => Right(false)
case other => Left(Invalid("bool", "wrong value received"))
}
So, according to your question, and your comments, these are the types you're dealing with.
type ID = Long //whatever id is
def WrongValue(x: String, xx: String) :String = "?-?-?"
case class Invalid(x: String, xx: String)
Now let's create a couple of error values.
val job_ :Either[String,ID] = Left(WrongValue("x","xx"))
val bool_ :Either[Invalid,Boolean] = Left(Invalid("x","xx"))
To combine and report them you might do something like this.
val errors :List[String] =
List(job_, bool_).flatMap(_.swap.toOption.map(_.toString))
println(errors.mkString(" & "))
//?-?-? & Invalid(x,xx)
After checking types as #cbley explained. You can just do a filter operation with pattern matching on your list:
val error = List(// your variables ).filter(_ match{
case Left(_) => true
case _ => false
})
Related
I want to avoid Runtime undefined behaivors as follows:
val jsonExample = Json.toJson(0)
jsonExample.asOpt[Instant]
yield Some(1970-01-01T00:00:00Z)
How can I verify this using partial function with a lift or some other way, to check thatits indeed Instant, or how you recommend to validate?
ex1:
val jsonExample = Json.toJson(Instant.now())
jsonExample match { ... }
ex2:
val jsonExample = Json.toJson(0)
jsonExample match { ... }
Examples for desired output:
validateInstant(Json.toJson(Instant.now())) -> return Some(...)
validateInstant(Json.toJson(0)) -> return None
I can do somthing as follows, maybe some other ideas?
Just wanted to add a note regarding parsing json, there some runtime undefined problems when we are trying to parse .asOpt[T]
for example:
Json.toJson("0").asOpt[BigDecimal] // yields Some(0)
Json.toJson(0).asOpt[Instant] // yields Some(1970-01-01T00:00:00Z)
We can validate it as follows or some other way:
Json.toJson("0") match {
case JsString(value) => Some(value)
case _ => None
}
Json.toJson(0) match {
case JsNumber(value) => Some(value)
case _ => None
}
Json.toJson(Instant.now()) match {
case o # JsString(_) => o.asOpt[Instant]
case _ => None
}
You can use Option:
def filterNumbers[T](value: T)(implicit tjs: Writes[T]): Option[Instant] = {
Option(Json.toJson(value)).filter(_.asOpt[JsNumber].isEmpty).flatMap(_.asOpt[Instant])
}
Then the following:
println(filterNumbers(Instant.now()))
println(filterNumbers(0))
will output:
Some(2021-02-22T10:35:13.777Z)
None
I have a Seq[String] in Scala, and if the Seq contains certain Strings, I append a relevant message to another list.
Is there a more 'scalaesque' way to do this, rather than a series of if statements appending to a list like I have below?
val result = new ListBuffer[Err]()
val malformedParamNames = // A Seq[String]
if (malformedParamNames.contains("$top")) result += IntegerMustBePositive("$top")
if (malformedParamNames.contains("$skip")) result += IntegerMustBePositive("$skip")
if (malformedParamNames.contains("modifiedDate")) result += FormatInvalid("modifiedDate", "yyyy-MM-dd")
...
result.toList
If you want to use some scala iterables sugar I would use
sealed trait Err
case class IntegerMustBePositive(msg: String) extends Err
case class FormatInvalid(msg: String, format: String) extends Err
val malformedParamNames = Seq[String]("$top", "aa", "$skip", "ccc", "ddd", "modifiedDate")
val result = malformedParamNames.map { v =>
v match {
case "$top" => Some(IntegerMustBePositive("$top"))
case "$skip" => Some(IntegerMustBePositive("$skip"))
case "modifiedDate" => Some(FormatInvalid("modifiedDate", "yyyy-MM-dd"))
case _ => None
}
}.flatten
result.toList
Be warn if you ask for scala-esque way of doing things there are many possibilities.
The map function combined with flatten can be simplified by using flatmap
sealed trait Err
case class IntegerMustBePositive(msg: String) extends Err
case class FormatInvalid(msg: String, format: String) extends Err
val malformedParamNames = Seq[String]("$top", "aa", "$skip", "ccc", "ddd", "modifiedDate")
val result = malformedParamNames.flatMap {
case "$top" => Some(IntegerMustBePositive("$top"))
case "$skip" => Some(IntegerMustBePositive("$skip"))
case "modifiedDate" => Some(FormatInvalid("modifiedDate", "yyyy-MM-dd"))
case _ => None
}
result
Most 'scalesque' version I can think of while keeping it readable would be:
val map = scala.collection.immutable.ListMap(
"$top" -> IntegerMustBePositive("$top"),
"$skip" -> IntegerMustBePositive("$skip"),
"modifiedDate" -> FormatInvalid("modifiedDate", "yyyy-MM-dd"))
val result = for {
(k,v) <- map
if malformedParamNames contains k
} yield v
//or
val result2 = map.filterKeys(malformedParamNames.contains).values.toList
Benoit's is probably the most scala-esque way of doing it, but depending on who's going to be reading the code later, you might want a different approach.
// Some type definitions omitted
val malformations = Seq[(String, Err)](
("$top", IntegerMustBePositive("$top")),
("$skip", IntegerMustBePositive("$skip")),
("modifiedDate", FormatInvalid("modifiedDate", "yyyy-MM-dd")
)
If you need a list and the order is siginificant:
val result = (malformations.foldLeft(List.empty[Err]) { (acc, pair) =>
if (malformedParamNames.contains(pair._1)) {
pair._2 ++: acc // prepend to list for faster performance
} else acc
}).reverse // and reverse since we were prepending
If the order isn't significant (although if the order's not significant, you might consider wanting a Set instead of a List):
val result = (malformations.foldLeft(Set.empty[Err]) { (acc, pair) =>
if (malformedParamNames.contains(pair._1)) {
acc ++ pair._2
} else acc
}).toList // omit the .toList if you're OK with just a Set
If the predicates in the repeated ifs are more complex/less uniform, then the type for malformations might need to change, as they would if the responses changed, but the basic pattern is very flexible.
In this solution we define a list of mappings that take your IF condition and THEN statement in pairs and we iterate over the inputted list and apply the changes where they match.
// IF THEN
case class Operation(matcher :String, action :String)
def processInput(input :List[String]) :List[String] = {
val operations = List(
Operation("$top", "integer must be positive"),
Operation("$skip", "skip value"),
Operation("$modify", "modify the date")
)
input.flatMap { in =>
operations.find(_.matcher == in).map { _.action }
}
}
println(processInput(List("$skip","$modify", "$skip")));
A breakdown
operations.find(_.matcher == in) // find an operation in our
// list matching the input we are
// checking. Returns Some or None
.map { _.action } // if some, replace input with action
// if none, do nothing
input.flatMap { in => // inputs are processed, converted
// to some(action) or none and the
// flatten removes the some/none
// returning just the strings.
My program receives a scala map, the requirements is to validate this map (key-value pairs). Ex: validate a key value, convert its type from string to int etc. In a rare case, we update the key as well before passing the map to the down layer.
Its not always required to update this map , but only when we detect that there are any unsupported keys or values.
I'm doing some thing like this:
private def updateMap ( parameters: Map[String, String]): Map[String, String] = {
parameters.map{
case(k,v) => k match { case "checkPool" =>
(k, (if (k.contains("checkPool"))
v match {
case "1" => "true"
case _ => "false"
}
else v))
case "Newheader" => (k.replace("Newheader","header"),v)
case _ =>(k,v)
}
case _ => ("","")
}
}
Like this the code increases for doing the validation and converting the keys/values to supported ones.
Is there a cleaner way of doing this validation in Scala for a map?
Regards
According to what I understood from your question, match case can be your solution
inOptions.map(kv => kv.keySet.contains(STR) match {
case true => mutable.HashMap(STR_UPDT->kv.get(STR).get)
case _ => kv
})
Edited
Since you updated your question with more requirements, simple if else condition matching seems to be the best choice.
def updateMap(parameters: Map[String, String]): Map[String, String] = {
parameters.map(kv => {
var key = kv._1
var value = kv._2
if(key.contains("checkPool")){
value = if(value.equals("1")) "true" else "false"
}
else if(key.contains("Newheader")){
key = key.replace("Newheader", "header")
}
(key, value)
})
}
You can add more else if conditions
I have a configuration value that matches to one of the values in a map and depending on to which it matches i take an action. Here is some sample code of what i am trying to do
val x = 1 // or 2 or 3
val config = Map("c1"-> 1, "c2"-> 2, "c3"-> 3)
x match {
case config("c1") =>
println("1")
case config("c2") =>
println("2")
case config("c3") =>
println("3")
}
Now this should print 1 because config("c1") evaluates to 1 but it gives error
error: value config is not a case class, nor does it have an unapply/unapplySeq member
case config("c1") =>
Similarly for the other 2 cases. Why should i have an unapply here? Any pointers?
An expression like that looks like an extractor, hence the message about unapply/unapplySeq methods. If you don't want to use an extractor but just want to match against a plain value, you need to store that value in a stable identifier - you can't use an arbitrary expression as a match case:
val case1 = config("c1")
x match {
case case1 => println("1")
...
}
To the best of my knowledge, in Scala, x match {case config("c1") gets translated to config.unapply(x) with the branching dependent on the result of the unapply method. As Imm already mentioned in his answer, this isn't the case for stable identifiers (literals and val), and I'd encourage you to use his solution.
Nevertheless, to show you how you could solve the problem using extractors, I'd like to post a different solution:
def main(args: Array[String]): Unit = {
object config {
val configData = Map("c1" -> 1, "c2" -> 2, "c3" -> 3)
def unapply(value: Int): Option[String] = configData find (_._2 == value) map (_._1)
}
1 to 4 foreach {
case config("c1") => println("1")
case config("c2") => println("2")
case config("c3") => println("3")
case _ => println("no match")
}
}
I changed the match for a foreach to show the different results, but this has no effect on the implementation. This would print:
1
2
3
no match
As you can see, case config("c1") now calls the unapply method and checks whether the result is Some("c1"). Note that this is inverse to how you'd use a map: The key is searched according to the value. However, this makes sense: If in the map, "c1" and "c2" both map to 1, then 1 matches both, the same way _ matches everything, in our case even 4 which is not configured.
Here's also a very brief tutorial on extractors. I don't find it particularly good, because both, the returned type and the argument type are Int, but it might help you understand what's going on.
As others have stated, with x match { case config("c1") => ..., scala looks for an extractor by the name of config (something with an unapply method that takes a single value and returns an Optional value); Making pattern matching work this way seems like an abuse of the pattern, and I would not use an extractor for this.
Personally, I would recommend one of the following:
if (x == config("c1"))
println("1")
else if (x == config("c2"))
println("2")
else ...
Or, if you're set on using a match statement, you can use conditionals like this:
x match {
case _ if x == config("c1") =>
println("1")
case _ if x == config("c2") =>
println("2")
case _ if x == config("c3") =>
println("3")
}
Not as clean; unfortunately, there isn't a way to invoke a method call literally where the extractor goes. You can use back-ticks to tell scala "match against the value of this variable" (rather than default behavior, which would yield the value named as that variable):
val (c1,c2,c3) = (config("c1"), config("c2"), config("c3"))
x match {
case `c1` =>
println("1")
case `c2` =>
println("2")
case `c3` =>
println("3")
}
Finally, if your goal is to reverse-apply a map, maybe try this instead?
scala> Map("a" -> 1).map { case (k,v) => (v,k) }
res0: scala.collection.immutable.Map[Int,String] = Map(1 -> a)
I can write the code like this:
str match {
case s if s.startsWith("!!!") => s.stripPrefix("!!!")
case _ =>
}
But I want to know is there any better solutions. For example:
str match {
case "!!!" + rest => rest
case _ =>
}
val r = """^!!!(.*)""".r
val r(suffix) = "!!!rest of string"
So suffix will be populated with rest of string, or a scala.MatchError gets thrown.
A different variant would be:
val r = """^(!!!){0,1}(.*)""".r
val r(prefix,suffix) = ...
And prefix will either match the !!! or be null. e.g.
(prefix, suffix) match {
case(null, s) => "No prefix"
case _ => "Prefix"
}
The above is a little more complex than you might need, but it's worth looking at the power of Scala's regexp integration.
Starting Scala 2.13, it's now possible to pattern match a String by unapplying a string interpolator:
"!!!hello" match {
case s"!!!$rest" => rest
case _ => "oups"
}
// "hello"
If it's the sort of thing you do often, it's probably worth creating an extractor
object BangBangBangString{
def unapply(str:String):Option[String]= {
str match {
case s if s.startsWith("!!!") => Some(s.stripPrefix("!!!"))
case _ => None
}
}
}
Then you can use the extractor as follows
str match{
case BangBangBangString(rest) => println(rest)
case _ => println("Doesn't start with !!!")
}
or even
for(BangBangBangString(rest)<-myStringList){
println("rest")
}
Good question !
Even i was trying a lot to find out the answer.
Here is a good link where I found the answer
object _04MatchExpression_PatternGuards {
def main(args: Array[String]): Unit = {
val url: String = "Jan";
val monthType = url match {
case url if url.endsWith(".org") => "Educational Websites";
case url if url.endsWith(".com") => "Commercial Websites";
case url if url.endsWith(".co.in") => "Indian Websites"
case _ => "Unknow Input";
}
}
}