I have this code below:
import java.util.Properties
import com.google.gson._
import com.typesafe.config.ConfigFactory
import org.apache.flink.cep.scala.pattern.Pattern
import org.apache.flink.cep.scala.CEP
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
object WindowedWordCount {
val configFactory = ConfigFactory.load()
def main(args: Array[String]) = {
val brokers = configFactory.getString("kafka.broker")
val topicChannel1 = configFactory.getString("kafka.topic1")
val props = new Properties()
...
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val dataStream = env.addSource(new FlinkKafkaConsumer010[String](topicChannel1, new SimpleStringSchema(), props))
val partitionedInput = dataStream.keyBy(jsonString => {
val jsonParser = new JsonParser()
val jsonObject = jsonParser.parse(jsonString).getAsJsonObject()
jsonObject.get("account")
})
val priceCheck = Pattern.begin[String]("start").where({jsonString =>
val jsonParser = new JsonParser()
val jsonObject = jsonParser.parse(jsonString).getAsJsonObject()
jsonObject.get("account").toString == "iOS"})
val pattern = CEP.pattern(partitionedInput, priceCheck)
val newStream = pattern.select(x =>
x.get("start").map({str =>
str
})
)
newStream.print()
env.execute()
}
}
For some reason in the above code at the newStream.print() nothing is being printed out. I am positive that there is data in Kafka that matches the pattern that I defined above but for some reason nothing is being printed out.
Can anyone please help me spot an error in this code?
EDIT:
class TimestampExtractor extends AssignerWithPeriodicWatermarks[String] with Serializable {
override def extractTimestamp(e: String, prevElementTimestamp: Long) = {
val jsonParser = new JsonParser()
val context = jsonParser.parse(e).getAsJsonObject.getAsJsonObject("context")
Instant.parse(context.get("serverTimestamp").toString.replaceAll("\"", "")).toEpochMilli
}
override def getCurrentWatermark(): Watermark = {
new Watermark(System.currentTimeMillis())
}
}
I saw on the flink doc that you can just return prevElementTimestamp in the extractTimestamp method (if you are using Kafka010) and new Watermark(System.currentTimeMillis) in the getCurrentWatermark method.
But I don't understand what prevElementTimestamp is or why one would return new Watermark(System.currentTimeMillis) as the WaterMark and not something else. Can you please elaborate on why we do this on how WaterMark and EventTime work together please?
You do setup your job to work in EventTime, but you do not provide timestamp and watermark extractor.
For more on working in event time see those docs. If you want to use the kafka embedded timestamps this docs may help you.
In EventTime the CEP library buffers events upon watermark arrival so to properly handle out-of-order events. In your case there are no watermarks generated, so the events are buffered infinitly.
Edit:
For the prevElementTimestamp I think the docs are pretty clear:
There is no need to define a timestamp extractor when using the timestamps from Kafka. The previousElementTimestamp argument of the extractTimestamp() method contains the timestamp carried by the Kafka message.
Since Kafka 0.10.x Kafka messages can have embedded timestamp.
Generating Watermark as new Watermark(System.currentTimeMillis) in this case is not a good idea. You should create Watermark based on your knowledge of the data. For information on how Watermark and EventTime work together I could not be more clear than the docs
Related
I'm trying to write a simple Apache Beam pipeline (which will run on the Dataflow runner) to do the following:
Read PubSub messages containing file paths on GCS from a subscription.
For each message, read the data contained in the file associated with the message (the files can be of a variery of formats (csv, jsonl, json, xml, ...)).
Do some processing on each record.
Write back the result on GCS.
I'm using a 10 seconds fixed window on the messages. Since incoming files are already chunked (max size of 10MB) I decided not to use splittable do functions to read the files, in order to avoid adding useless complexity (especially for files that are not trivially splittable in chunks).
Here is a simplified code sample that gives the exact same problem of the full one:
package skytv.ingester
import java.io.{BufferedReader, InputStreamReader}
import java.nio.charset.StandardCharsets
import kantan.csv.rfc
import org.apache.beam.sdk.Pipeline
import org.apache.beam.sdk.io.{Compression, FileIO, FileSystems, TextIO, WriteFilesResult}
import org.apache.beam.sdk.io.gcp.pubsub.{PubsubIO, PubsubMessage}
import org.apache.beam.sdk.options.PipelineOptionsFactory
import org.apache.beam.sdk.transforms.DoFn.ProcessElement
import org.apache.beam.sdk.transforms.windowing.{BoundedWindow, FixedWindows, PaneInfo, Window}
import org.apache.beam.sdk.transforms.{Contextful, DoFn, MapElements, PTransform, ParDo, SerializableFunction, SimpleFunction, WithTimestamps}
import org.apache.beam.sdk.values.{KV, PCollection}
import org.joda.time.{Duration, Instant}
import skytv.cloudstorage.CloudStorageClient
import skytv.common.Closeable
import kantan.csv.ops._
import org.apache.beam.sdk.io.FileIO.{Sink, Write}
class FileReader extends DoFn[String, List[String]] {
private def getFileReader(filePath: String) = {
val cloudStorageClient = new CloudStorageClient()
val inputStream = cloudStorageClient.getInputStream(filePath)
val isr = new InputStreamReader(inputStream, StandardCharsets.UTF_8)
new BufferedReader(isr)
}
private def getRowsIterator(fileReader: BufferedReader) = {
fileReader
.asUnsafeCsvReader[Seq[String]](rfc
.withCellSeparator(',')
.withoutHeader
.withQuote('"'))
.toIterator
}
#ProcessElement
def processElement(c: ProcessContext): Unit = {
val filePath = c.element()
Closeable.tryWithResources(
getFileReader(filePath)
) {
fileReader => {
getRowsIterator(fileReader)
.foreach(record => c.output(record.toList))
}
}
}
}
class DataWriter(tempFolder: String) extends PTransform[PCollection[List[String]], WriteFilesResult[String]] {
private val convertRecord = Contextful.fn[List[String], String]((dr: List[String]) => {
dr.mkString(",")
})
private val getSink = Contextful.fn[String, Sink[String]]((destinationKey: String) => {
TextIO.sink()
})
private val getPartitioningKey = new SerializableFunction[List[String], String] {
override def apply(input: List[String]): String = {
input.head
}
}
private val getNaming = Contextful.fn[String, Write.FileNaming]((destinationKey: String) => {
new Write.FileNaming {
override def getFilename(
window: BoundedWindow,
pane: PaneInfo,
numShards: Int,
shardIndex: Int,
compression: Compression
): String = {
s"$destinationKey-${window.maxTimestamp()}-${pane.getIndex}.csv"
}
}
})
override def expand(input: PCollection[List[String]]): WriteFilesResult[String] = {
val fileWritingTransform = FileIO
.writeDynamic[String, List[String]]()
.by(getPartitioningKey)
.withDestinationCoder(input.getPipeline.getCoderRegistry.getCoder(classOf[String]))
.withTempDirectory(tempFolder)
.via(convertRecord, getSink)
.withNaming(getNaming)
.withNumShards(1)
input
.apply("WriteToAvro", fileWritingTransform)
}
}
object EnhancedIngesterScalaSimplified {
private val SUBSCRIPTION_NAME = "projects/<project>/subscriptions/<subscription>"
private val TMP_LOCATION = "gs://<path>"
private val WINDOW_SIZE = Duration.standardSeconds(10)
def main(args: Array[String]): Unit = {
val options = PipelineOptionsFactory.fromArgs(args: _*).withValidation().create()
FileSystems.setDefaultPipelineOptions(options)
val p = Pipeline.create(options)
val messages = p
.apply("ReadMessages", PubsubIO.readMessagesWithAttributes.fromSubscription(SUBSCRIPTION_NAME))
// .apply("AddProcessingTimeTimestamp", WithTimestamps.of(new SerializableFunction[PubsubMessage, Instant] {
// override def apply(input: PubsubMessage): Instant = Instant.now()
// }))
val parsedMessages = messages
.apply("ApplyWindow", Window.into[PubsubMessage](FixedWindows.of(WINDOW_SIZE)))
.apply("ParseMessages", MapElements.via(new SimpleFunction[PubsubMessage, String]() {
override def apply(msg: PubsubMessage): String = new String(msg.getPayload, StandardCharsets.UTF_8)
}))
val dataReadResult = parsedMessages
.apply("ReadData", ParDo.of(new FileReader))
val writerResult = dataReadResult.apply(
"WriteData",
new DataWriter(TMP_LOCATION)
)
writerResult.getPerDestinationOutputFilenames.apply(
"FilesWritten",
MapElements.via(new SimpleFunction[KV[String, String], String]() {
override def apply(input: KV[String, String]): String = {
println(s"Written ${input.getKey}, ${input.getValue}")
input.getValue
}
}))
p.run.waitUntilFinish()
}
}
The problem is that after the processing of some messages (in the order of 1000), the job stops processing new messages and they remain in the PubSub subscription unacknowledged forever.
I saw that in such a situation the watermark stops to advance and the data freshness linearly increases indefinitely.
Here is a screenshot from dataflow:
And here the situation on the PubSub queue:
Is it possible that there are some messages that remain stuck in the dataflow queues filling them so that no new messages can be added?
I thought that there was some problem on how timestamps are computed by the PubsubIO, so I tried to force the timestamps to be equal to the processing time of each message, but I had no success.
If I leave the dataflow job in this state, it seems that it continuously reprocesses the same messages without writing any data to storage.
Do you have any idea on how to solve this problem?
Thanks!
Most likely the pipeline has encountered an error while processing one(or more) elements in the pipeline (and it shouldn't have anything to do with how timestamps are computed by the PubsubIO), which stops the watermark from advancing since the failed work will be retried again and again on dataflow.
You can check if there's any failure from the log, specifically from worker or harness component. If there's an unhandled runtime exception such as parse error etc, it is very likely being the root cause of a streaming pipeline getting stuck.
If there's no UserCodeException then it is likely some other issue caused by dataflow backend and you can reach out to Dataflow customer support so engineers can look into the backend issue for your pipeline.
I am trying to play with flink's broacast state with a simple case.
I juste want to multiply an integer stream by another integer into a broadcast stream.
The behavior of my Broadcast is "weird", if I put too few elements in my input stream (like 10), nothing happen and my MapState is empty, but if I put more elements (like 100) I have the behavior I want (multiply the integer stream by 2 here).
Why broadcast stream is not taking into account if I gave too few elements ?
How can I control when the broadcast stream is working ?
Optional: I want to keep only the last element of my broadcast stream, is .clear() the good way ?
Thank you!
Here's my BroadcastProcessFunction:
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction
import org.apache.flink.util.Collector
import scala.collection.JavaConversions._
class BroadcastProcess extends BroadcastProcessFunction[Int, Int, Int] {
override def processElement(value: Int, ctx: BroadcastProcessFunction[Int, Int, Int]#ReadOnlyContext, out: Collector[Int]) = {
val currentBroadcastState = ctx.getBroadcastState(State.mapState).immutableEntries()
if (currentBroadcastState.isEmpty) {
out.collect(value)
} else {
out.collect(currentBroadcastState.last.getValue * value)
}
}
override def processBroadcastElement(value: Int, ctx: BroadcastProcessFunction[Int, Int, Int]#Context, out: Collector[Int]) = {
// Keep only last state
ctx.getBroadcastState(State.mapState).clear()
// Add state
ctx.getBroadcastState(State.mapState).put("key", value)
}
}
And my MapState:
import org.apache.flink.api.common.state.MapStateDescriptor
import org.apache.flink.api.scala._
object State {
val mapState: MapStateDescriptor[String, Int] =
new MapStateDescriptor(
"State",
createTypeInformation[String],
createTypeInformation[Int]
)
}
And my Main:
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.api.scala._
object Broadcast {
def main(args: Array[String]): Unit = {
val numberElements = 100
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val broadcastStream = env.fromElements(2).broadcast(State.mapState)
val input = (1 to numberElements).toList
val inputStream = env.fromCollection(input)
val outputStream = inputStream
.connect(broadcastStream)
.process(new BroadcastProcess())
outputStream.print()
env.execute()
}
}
Edit: I use Flink 1.5, and Broadcast State documentation is here.
Flink does not synchronize the ingestion of streams, i.e., streams produce data as soon as they can. This is true for regular and broadcast inputs. The BroadcastProcess will not wait for the first broadcast input to arrive before ingesting the regular input.
When you put more numbers into the regular input, it just takes more time to serialize, deserialize, and serve the input such that the broadcast input is already present, when the first regular number arrives.
I've the following code in scala. I am using spark sql to pull data from hadoop, perform some group by on the result, serialize it and then write that message to Kafka.
I've written the code - but i want to write it in functional way. Should i create a new class with function 'getCategories' to get the categories from Hadoop? I am not sure how to approach this.
Here is the code
class ExtractProcessor {
def process(): Unit = {
implicit val formats = DefaultFormats
val spark = SparkSession.builder().appName("test app").getOrCreate()
try {
val df = spark.sql("SELECT DISTINCT SUBCAT_CODE, SUBCAT_NAME, CAT_CODE, CAT_NAME " +
"FROM CATEGORY_HIERARCHY " +
"ORDER BY CAT_CODE, SUBCAT_CODE ")
val result = df.collect().groupBy(row => (row(2), row(3)))
val categories = result.map(cat =>
category(cat._1._1.toString(), cat._1._2.toString(),
cat._2.map(subcat =>
subcategory(subcat(0).toString(), subcat(1).toString())).toList))
val jsonMessage = write(categories)
val kafkaKey = java.security.MessageDigest.getInstance("SHA-1").digest(jsonMessage.getBytes("UTF-8")).map("%02x".format(_)).mkString.toString()
val key = write(kafkaKey)
Logger.log.info(s"Json Message: ${jsonMessage}")
Logger.log.info(s"Kafka Key: ${key}")
KafkaUtil.apply.send(key, jsonMessage, "testTopic")
}
And here is the Kafka Code
class KafkaUtil {
def send(key: String, message: String, topicName: String): Unit = {
val properties = new Properties()
properties.put("bootstrap.servers", "localhost:9092")
properties.put("client.id", "test publisher")
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](properties)
try {
val record = new ProducerRecord[String, String](topicName, key, message)
producer.send(record)
}
finally {
producer.close()
Logger.log.info("Kafka producer closed...")
}
}
}
object KafkaUtil {
def apply: KafkaUtil = {
new KafkaUtil
}
}
Also, for writing unit tests what should i be testing in the functional approach. In OOP we unit test the business logic, but in my scala code there is hardly any business logic.
Any help is appreciated.
Thanks in advance,
Suyog
You code consists of
1) Loading the data into spark df
2) Crunching the data
3) Creating a json message
4) Sending json message to kafka
Unit tests are good for testing pure functions.
You can extract step 2) into a method with signature like
def getCategories(df: DataFrame): Seq[Category] and cover it by a test.
In the test data frame will be generated from just a plain hard-coded in-memory sequence.
Step 3) can be also covered by a unit test if you feel it error-prone
Steps 1) and 4) are to be covered by an end-to-end test
By the way
val result = df.collect().groupBy(row => (row(2), row(3))) is inefficient. Better to replace it by val result = df.groupBy(row => (row(2), row(3))).collect
Also there is no need to initialize a KafkaProducer individually for each single message.
What Im trying to solve is the following case:
Given an infinite running Akka Stream I want to be able to monitor certain points of the stream. The best way I could think of where to send the messages at this point to an Actor wich is also a Source. This makes it very flexible for me to then connect either individual Sources or merge multiple sources to a websocket or whatever other client I want to connect. However in this specific case Im trying to connect ScalaFX with Akka Source but it is not working as expected.
When I run the code below both counters start out ok but after a short while one of them stops and never recovers. I know there are special considerations with threading when using ScalaFX but I dont have the knowledge enough to understand what is going on here or debug it. Below is a minimal example to run, the issue should be visible after about 5 seconds.
My question is:
How could I change this code to work as expected?
import akka.NotUsed
import scalafx.Includes._
import akka.actor.{ActorRef, ActorSystem}
import akka.stream.{ActorMaterializer, OverflowStrategy, ThrottleMode}
import akka.stream.scaladsl.{Flow, Sink, Source}
import scalafx.application.JFXApp
import scalafx.beans.property.{IntegerProperty, StringProperty}
import scalafx.scene.Scene
import scalafx.scene.layout.BorderPane
import scalafx.scene.text.Text
import scala.concurrent.duration._
/**
* Created by henke on 2017-06-10.
*/
object MonitorApp extends JFXApp {
implicit val system = ActorSystem("monitor")
implicit val mat = ActorMaterializer()
val value1 = StringProperty("0")
val value2 = StringProperty("0")
stage = new JFXApp.PrimaryStage {
title = "Akka Stream Monitor"
scene = new Scene(600, 400) {
root = new BorderPane() {
left = new Text {
text <== value1
}
right = new Text {
text <== value2
}
}
}
}
override def stopApp() = system.terminate()
val monitor1 = createMonitor[Int]
val monitor2 = createMonitor[Int]
val marketChangeActor1 = monitor1
.to(Sink.foreach{ v =>
value1() = v.toString
}).run()
val marketChangeActor2 = monitor2
.to(Sink.foreach{ v =>
value2() = v.toString
}).run()
val monitorActor = Source[Int](1 to 100)
.throttle(1, 1.second, 1, ThrottleMode.shaping)
.via(logToMonitorAndContinue(marketChangeActor1))
.map(_ * 10)
.via(logToMonitorAndContinue(marketChangeActor2))
.to(Sink.ignore).run()
def createMonitor[T]: Source[T, ActorRef] = Source.actorRef[T](Int.MaxValue, OverflowStrategy.fail)
def logToMonitorAndContinue[T](monitor: ActorRef): Flow[T, T, NotUsed] = {
Flow[T].map{ e =>
monitor ! e
e
}
}
}
It seems that you assign values to the properties (and therefore affect the UI) in the actor system threads. However, all interaction with the UI should be done in the JavaFX GUI thread. Try wrapping value1() = v.toString and the second one in Platform.runLater calls.
I wasn't able to find a definitive statement about using runLater to interact with JavaFX data except in the JavaFX-Swing integration document, but this is quite a common thing in UI libraries; same is also true for Swing with its SwingUtilities.invokeLater method, for example.
I'm trying to get some messages with Twitter Streaming API using Apache Flink.
But, my code is not writing anything in the output file. I'm trying to count the input data for specific words.
Plese check my example:
import java.util.Properties
import org.apache.flink.api.scala._
import org.apache.flink.streaming.connectors.twitter._
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import com.twitter.hbc.core.endpoint.{Location, StatusesFilterEndpoint, StreamingEndpoint}
import org.apache.flink.streaming.api.windowing.time.Time
import scala.collection.JavaConverters._
//////////////////////////////////////////////////////
// Create an Endpoint to Track our terms
class myFilterEndpoint extends TwitterSource.EndpointInitializer with Serializable {
#Override
def createEndpoint(): StreamingEndpoint = {
//val chicago = new Location(new Location.Coordinate(-86.0, 41.0), new Location.Coordinate(-87.0, 42.0))
val endpoint = new StatusesFilterEndpoint()
//endpoint.locations(List(chicago).asJava)
endpoint.trackTerms(List("odebrecht", "lava", "jato").asJava)
endpoint
}
}
object Connection {
def main(args: Array[String]): Unit = {
val props = new Properties()
val params: ParameterTool = ParameterTool.fromArgs(args)
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.getConfig.setGlobalJobParameters(params)
env.setParallelism(params.getInt("parallelism", 1))
props.setProperty(TwitterSource.CONSUMER_KEY, params.get("consumer-key"))
props.setProperty(TwitterSource.CONSUMER_SECRET, params.get("consumer-key"))
props.setProperty(TwitterSource.TOKEN, params.get("token"))
props.setProperty(TwitterSource.TOKEN_SECRET, params.get("token-secret"))
val source = new TwitterSource(props)
val epInit = new myFilterEndpoint()
source.setCustomEndpointInitializer(epInit)
val streamSource = env.addSource(source)
streamSource.map(s => (0, 1))
.keyBy(0)
.timeWindow(Time.minutes(2), Time.seconds(30))
.sum(1)
.map(t => t._2)
.writeAsText(params.get("output"))
env.execute("Twitter Count")
}
}
The point is, I have no error message and I can see at my Dashboard. My source is sending data to my TriggerWindow. But it is not receive any data:
I have two questions in once.
First: Why my source is sending bytes to my TriggerWindow if it is not received anything?
Seccond: Is something wrong to my code that I can't take data from twitter?
Your application source did not send actual records to the window which you can see by looking at the Records sent column. The bytes which are sent belong to control messages which Flink sends from time to time between the tasks. More specifically, it is the LatencyMarker message which is used to measure the end to end latency of a Flink job.
The code looks good to me. I even tried out your code and worked for me. Thus, I conclude that there has to be something wrong with the Twitter connection credentials. Please re-check whether you've entered the right credentials.