I am quite new to Akka Streams, whereas I have some experience with Kafka Streams.
One thing it seems lacking in Akka Streams is the possibility to join together two different streams.
Kafka Streams allows joining information coming from two different streams (or tables) using the messages' keys.
Is there something similar in Akka Streams?
The short answer is unfortunately no. I would argue that Akka-streams is more low level than Kafka-Stream, Spark Streaming, or Flink. However, you have more control over what you are doing. Basically, it means that you can build your join operator. Check this discussion at lightbend.
Basically, you have to get data from 2 Sources, Merge them and send to a window based on time or number of tuples, compute the join, and emit the data to the Sink. I have done this PoC (which is still unfinished) but I follow the operators that I said to you here, and it is compiling and working. Basically, I still have to join the data inside the window. Currently, I am just emitting them in a mini-batch.
import akka.NotUsed
import akka.actor.ActorSystem
import akka.stream.{Attributes, ClosedShape, FlowShape, Inlet, Outlet}
import akka.stream.scaladsl.{Flow, GraphDSL, Merge, RunnableGraph, Sink, Source}
import akka.stream.stage.{GraphStage, GraphStageLogic, InHandler, OutHandler, TimerGraphStageLogic}
import scala.collection.mutable
import scala.concurrent.duration._
object StreamOpenGraphJoin {
def main(args: Array[String]): Unit = {
implicit val system = ActorSystem("StreamOpenGraphJoin")
val incrementSource: Source[Int, NotUsed] = Source(1 to 10).throttle(1, 1 second)
val decrementSource: Source[Int, NotUsed] = Source(10 to 20).throttle(1, 1 second)
def tokenizerSource(key: Int) = {
Flow[Int].map { value =>
(key, value)
}
}
// Step 1 - setting up the fundamental for a stream graph
val switchJoinStrategies = RunnableGraph.fromGraph(
GraphDSL.create() { implicit builder =>
import GraphDSL.Implicits._
// Step 2 - add partition and merge strategy
val tokenizerShape00 = builder.add(tokenizerSource(0))
val tokenizerShape01 = builder.add(tokenizerSource(1))
val mergeTupleShape = builder.add(Merge[(Int, Int)](2))
val batchFlow = Flow.fromGraph(new BatchTimerFlow[(Int, Int)](5 seconds))
val sinkShape = builder.add(Sink.foreach[(Int, Int)](x => println(s" > sink: $x")))
// Step 3 - tying up the components
incrementSource ~> tokenizerShape00 ~> mergeTupleShape.in(0)
decrementSource ~> tokenizerShape01 ~> mergeTupleShape.in(1)
mergeTupleShape.out ~> batchFlow ~> sinkShape
// Step 4 - return the shape
ClosedShape
}
)
// run the graph and materialize it
val graph = switchJoinStrategies.run()
}
// step 0: define the shape
class BatchTimerFlow[T](silencePeriod: FiniteDuration) extends GraphStage[FlowShape[T, T]] {
// step 1: define the ports and the component-specific members
val in = Inlet[T]("BatchTimerFlow.in")
val out = Outlet[T]("BatchTimerFlow.out")
// step 3: create the logic
override def createLogic(inheritedAttributes: Attributes): GraphStageLogic = new TimerGraphStageLogic(shape) {
// mutable state
val batch = new mutable.Queue[T]
var open = false
// step 4: define mutable state implement my logic here
setHandler(in, new InHandler {
override def onPush(): Unit = {
try {
val nextElement = grab(in)
batch.enqueue(nextElement)
Thread.sleep(50) // simulate an expensive computation
if (open) pull(in) // send demand upstream signal, asking for another element
else {
// forward the element to the downstream operator
emitMultiple(out, batch.dequeueAll(_ => true).to[collection.immutable.Iterable])
open = true
scheduleOnce(None, silencePeriod)
}
} catch {
case e: Throwable => failStage(e)
}
}
})
setHandler(out, new OutHandler {
override def onPull(): Unit = {
pull(in)
}
})
override protected def onTimer(timerKey: Any): Unit = {
open = false
}
}
// step 2: construct a new shape
override def shape: FlowShape[T, T] = FlowShape[T, T](in, out)
}
}
I needed a sink to Postgres DB, so I started to build a custom Flink SinkFunction. As FlinkKafkaProducer implements TwoPhaseCommitSinkFunction, then I decided to do the same. As stated in O'Reilley's book Stream Processing with Apache Flink, you just need to implement the abstract methods, enable checkpointing and you're up to go. But what really happens when I run my code is that commit method is called only once, and it is called before invoke, what is totally unexpected since you shouldn't be ready to commit if your set of ready-to-commit transactions is empty. And the worst is that, after committing, invoke is called for all of the transaction lines present in my file, and then abort is called, which is even more unexpected.
When the Sink is initialized, It is of my understanding that the following should occur:
beginTransaction is called and sends an identifier to invoke
invoke adds the lines to the transaction, according to the identifier received
pre-commit makes all final modification on current transaction data
commit handles the finalized transaction of pre-commited data
So, I can't see why my program doesn't show this behaviour.
Here goes my sink code:
package PostgresConnector
import java.sql.{BatchUpdateException, DriverManager, PreparedStatement, SQLException, Timestamp}
import java.text.ParseException
import java.util.{Date, Properties, UUID}
import org.apache.flink.api.common.ExecutionConfig
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{SinkFunction, TwoPhaseCommitSinkFunction}
import org.apache.flink.streaming.api.scala._
import org.slf4j.{Logger, LoggerFactory}
class PostgreSink(props : Properties, config : ExecutionConfig) extends TwoPhaseCommitSinkFunction[(String,String,String,String),String,String](createTypeInformation[String].createSerializer(config),createTypeInformation[String].createSerializer(config)){
private var transactionMap : Map[String,Array[(String,String,String,String)]] = Map()
private var parsedQuery : PreparedStatement = _
private val insertionString : String = "INSERT INTO mydb (field1,field2,point) values (?,?,point(?,?))"
override def invoke(transaction: String, value: (String,String,String,String), context: SinkFunction.Context[_]): Unit = {
val LOG = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
val res = this.transactionMap.get(transaction)
if(res.isDefined){
var array = res.get
array = array ++ Array(value)
this.transactionMap += (transaction -> array)
}else{
val array = Array(value)
this.transactionMap += (transaction -> array)
}
LOG.info("\n\nPassing through invoke\n\n")
()
}
override def beginTransaction(): String = {
val LOG: Logger = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
val identifier = UUID.randomUUID.toString
LOG.info("\n\nPassing through beginTransaction\n\n")
identifier
}
override def preCommit(transaction: String): Unit = {
val LOG = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
try{
val tuple : Option[Array[(String,String,String,String)]]= this.transactionMap.get(transaction)
if(tuple.isDefined){
tuple.get.foreach( (value : (String,String,String,String)) => {
LOG.info("\n\n"+value.toString()+"\n\n")
this.parsedQuery.setString(1,value._1)
this.parsedQuery.setString(2,value._2)
this.parsedQuery.setString(3,value._3)
this.parsedQuery.setString(4,value._4)
this.parsedQuery.addBatch()
})
}
}catch{
case e : SQLException =>
LOG.info("\n\nError when adding transaction to batch: SQLException\n\n")
case f : ParseException =>
LOG.info("\n\nError when adding transaction to batch: ParseException\n\n")
case g : NoSuchElementException =>
LOG.info("\n\nError when adding transaction to batch: NoSuchElementException\n\n")
case h : Exception =>
LOG.info("\n\nError when adding transaction to batch: Exception\n\n")
}
this.transactionMap = this.transactionMap.empty
LOG.info("\n\nPassing through preCommit...\n\n")
}
override def commit(transaction: String): Unit = {
val LOG : Logger = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
if(this.parsedQuery != null) {
LOG.info("\n\n" + this.parsedQuery.toString+ "\n\n")
}
try{
this.parsedQuery.executeBatch
val LOG : Logger = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
LOG.info("\n\nExecuting batch\n\n")
}catch{
case e : SQLException =>
val LOG : Logger = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
LOG.info("\n\n"+"Error : SQLException"+"\n\n")
}
this.transactionMap = this.transactionMap.empty
LOG.info("\n\nPassing through commit...\n\n")
}
override def abort(transaction: String): Unit = {
val LOG : Logger = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
this.transactionMap = this.transactionMap.empty
LOG.info("\n\nPassing through abort...\n\n")
}
override def open(parameters: Configuration): Unit = {
val LOG: Logger = LoggerFactory.getLogger(classOf[FlinkCEPClasses.FlinkCEPPipeline])
val driver = props.getProperty("driver")
val url = props.getProperty("url")
val user = props.getProperty("user")
val password = props.getProperty("password")
Class.forName(driver)
val connection = DriverManager.getConnection(url + "?user=" + user + "&password=" + password)
this.parsedQuery = connection.prepareStatement(insertionString)
LOG.info("\n\nConfiguring BD conection parameters\n\n")
}
}
And this is my main program:
package FlinkCEPClasses
import PostgresConnector.PostgreSink
import org.apache.flink.api.java.io.TextInputFormat
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.cep.PatternSelectFunction
import org.apache.flink.cep.pattern.conditions.SimpleCondition
import org.apache.flink.cep.scala.pattern.Pattern
import org.apache.flink.core.fs.{FileSystem, Path}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.cep.scala.{CEP, PatternStream}
import org.apache.flink.streaming.api.functions.source.FileProcessingMode
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import java.util.Properties
import org.apache.flink.api.common.ExecutionConfig
import org.slf4j.{Logger, LoggerFactory}
class FlinkCEPPipeline {
val LOG: Logger = LoggerFactory.getLogger(classOf[FlinkCEPPipeline])
LOG.info("\n\nStarting the pipeline...\n\n")
var env : StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
env.enableCheckpointing(10)
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)
env.setParallelism(1)
//var input : DataStream[String] = env.readFile(new TextInputFormat(new Path("/home/luca/Desktop/lines")),"/home/luca/Desktop/lines",FileProcessingMode.PROCESS_CONTINUOUSLY,1)
var input : DataStream[String] = env.readTextFile("/home/luca/Desktop/lines").name("Raw stream")
var tupleStream : DataStream[(String,String,String,String)] = input.map(new S2PMapFunction()).name("Tuple Stream")
var properties : Properties = new Properties()
properties.setProperty("driver","org.postgresql.Driver")
properties.setProperty("url","jdbc:postgresql://localhost:5432/mydb")
properties.setProperty("user","luca")
properties.setProperty("password","root")
tupleStream.addSink(new PostgreSink(properties,env.getConfig)).name("Postgres Sink").setParallelism(1)
tupleStream.writeAsText("/home/luca/Desktop/output",FileSystem.WriteMode.OVERWRITE).name("File Sink").setParallelism(1)
env.execute()
}
My S2PMapFunction code:
package FlinkCEPClasses
import org.apache.flink.api.common.functions.MapFunction
case class S2PMapFunction() extends MapFunction[String,(String,String,String,String)] {
override def map(value: String): (String, String, String,String) = {
var tuple = value.replaceAllLiterally("(","").replaceAllLiterally(")","").split(',')
(tuple(0),tuple(1),tuple(2),tuple(3))
}
}
My pipeline works like this: I read lines from a file, map them to a tuple of strings, and use the data inside the tuples to save them in a Postgres DB
If you want to simulate the data, just create a file with lines in a format like this:
(field1,field2,pointx,pointy)
Edit
The execution order of the TwoPhaseCommitSinkFUnction's methods is the following:
Starting pipeline...
beginTransaction
preCommit
beginTransaction
commit
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
invoke
abort
I'm not an expert on this topic, but a couple of guesses:
preCommit is called whenever Flink begins a checkpoint, and commit is called when the checkpoint is complete. These methods are called simply because checkpointing is happening, regardless of whether the sink has received any data.
Checkpointing is happening periodically, regardless of whether any data is flowing through your pipeline. Given your very short checkpointing interval (10 msec), it does seem plausible that the first checkpoint barrier will reach the sink before the source has managed to send it any data.
It also looks like you are assuming that only one transaction will be open at a time. I'm not sure that's strictly guaranteed, but so long as maxConcurrentCheckpoints is 1 (which is the default), you should be okay.
So, here goes the "answer" for this question. Just to be clear: at this moment, the problem about the TwoPhaseCommitSinkFunction hasn't been solved yet. If what you're looking for is about the original problem, then you should look for another answer. If you don't care about what you'll use as a sink, then maybe I can help you with that.
As suggested by #DavidAnderson, I started to study the Table API and see if it could solve my problem, which was using Flink to insert lines in my database table.
It turned out to be really simple, as you'll see.
OBS: Beware of the version you are using. My Flink's version is 1.9.0.
Source code
package FlinkCEPClasses
import java.sql.Timestamp
import java.util.Properties
import org.apache.flink.api.common.typeinfo.{TypeInformation, Types}
import org.apache.flink.api.java.io.jdbc.JDBCAppendTableSink
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.table.api.{EnvironmentSettings, Table}
import org.apache.flink.table.api.scala.StreamTableEnvironment
import org.apache.flink.streaming.api.scala._
import org.apache.flink.table.sinks.TableSink
import org.postgresql.Driver
class TableAPIPipeline {
// --- normal pipeline initialization in this block ---
var env : StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
env.enableCheckpointing(10)
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)
env.setParallelism(1)
var input : DataStream[String] = env.readTextFile("/home/luca/Desktop/lines").name("Original stream")
var tupleStream : DataStream[(String,Timestamp,Double,Double)] = input.map(new S2PlacaMapFunction()).name("Tuple Stream")
var properties : Properties = new Properties()
properties.setProperty("driver","org.postgresql.Driver")
properties.setProperty("url","jdbc:postgresql://localhost:5432/mydb")
properties.setProperty("user","myuser")
properties.setProperty("password","mypassword")
// --- normal pipeline initialization in this block END ---
// These two lines create what Flink calls StreamTableEnvironment.
// It seems pretty similar to a normal stream initialization.
val settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build()
val tableEnv = StreamTableEnvironment.create(env,settings)
//Since I wanted to sink data into a database, I used JDBC TableSink,
//because it is very intuitive and is a exact match with my need. You may
//look for other TableSink classes that fit better in you solution.
var tableSink : JDBCAppendTableSink = JDBCAppendTableSink.builder()
.setBatchSize(1)
.setDBUrl("jdbc:postgresql://localhost:5432/mydb")
.setDrivername("org.postgresql.Driver")
.setPassword("mypassword")
.setUsername("myuser")
.setQuery("INSERT INTO mytable (data1,data2,data3) VALUES (?,?,point(?,?))")
.setParameterTypes(Types.STRING,Types.SQL_TIMESTAMP,Types.DOUBLE,Types.DOUBLE)
.build()
val fieldNames = Array("data1","data2","data3","data4")
val fieldTypes = Array[TypeInformation[_]](Types.STRING,Types.SQL_TIMESTAMP,Types.DOUBLE, Types.DOUBLE)
// This is the crucial part of the code: first, you need to register
// your table sink, informing the name, the field names, field types and
// the TableSink object.
tableEnv.registerTableSink("postgres-table-sink",
fieldNames,
fieldTypes,
tableSink
)
// Then, you transform your DataStream into a Table object.
var table = tableEnv.fromDataStream(tupleStream)
// Finally, you insert your stream data into the registered sink.
table.insertInto("postgres-table-sink")
env.execute()
}
I am trying to play with flink's broacast state with a simple case.
I juste want to multiply an integer stream by another integer into a broadcast stream.
The behavior of my Broadcast is "weird", if I put too few elements in my input stream (like 10), nothing happen and my MapState is empty, but if I put more elements (like 100) I have the behavior I want (multiply the integer stream by 2 here).
Why broadcast stream is not taking into account if I gave too few elements ?
How can I control when the broadcast stream is working ?
Optional: I want to keep only the last element of my broadcast stream, is .clear() the good way ?
Thank you!
Here's my BroadcastProcessFunction:
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction
import org.apache.flink.util.Collector
import scala.collection.JavaConversions._
class BroadcastProcess extends BroadcastProcessFunction[Int, Int, Int] {
override def processElement(value: Int, ctx: BroadcastProcessFunction[Int, Int, Int]#ReadOnlyContext, out: Collector[Int]) = {
val currentBroadcastState = ctx.getBroadcastState(State.mapState).immutableEntries()
if (currentBroadcastState.isEmpty) {
out.collect(value)
} else {
out.collect(currentBroadcastState.last.getValue * value)
}
}
override def processBroadcastElement(value: Int, ctx: BroadcastProcessFunction[Int, Int, Int]#Context, out: Collector[Int]) = {
// Keep only last state
ctx.getBroadcastState(State.mapState).clear()
// Add state
ctx.getBroadcastState(State.mapState).put("key", value)
}
}
And my MapState:
import org.apache.flink.api.common.state.MapStateDescriptor
import org.apache.flink.api.scala._
object State {
val mapState: MapStateDescriptor[String, Int] =
new MapStateDescriptor(
"State",
createTypeInformation[String],
createTypeInformation[Int]
)
}
And my Main:
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.api.scala._
object Broadcast {
def main(args: Array[String]): Unit = {
val numberElements = 100
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
val broadcastStream = env.fromElements(2).broadcast(State.mapState)
val input = (1 to numberElements).toList
val inputStream = env.fromCollection(input)
val outputStream = inputStream
.connect(broadcastStream)
.process(new BroadcastProcess())
outputStream.print()
env.execute()
}
}
Edit: I use Flink 1.5, and Broadcast State documentation is here.
Flink does not synchronize the ingestion of streams, i.e., streams produce data as soon as they can. This is true for regular and broadcast inputs. The BroadcastProcess will not wait for the first broadcast input to arrive before ingesting the regular input.
When you put more numbers into the regular input, it just takes more time to serialize, deserialize, and serve the input such that the broadcast input is already present, when the first regular number arrives.
I would like for unit test to create a source with committable message and with Consumer control.
Or to transform a source created like this :
val message: Source[Array[Byte], NotUsed] = Source.single("one message".getBytes)
to something like this
Source[CommittableMessage[Array[Byte], String], Consumer.Control]
Goal is to unit test actor behavior on message without having to install kafka on the build machine
You can use this helper to create a CommittableMessage:
package akka.kafka.internal
import akka.Done
import akka.kafka.ConsumerMessage.{CommittableMessage, CommittableOffsetBatch, GroupTopicPartition, PartitionOffset}
import akka.kafka.internal.ConsumerStage.Committer
import org.apache.kafka.clients.consumer.ConsumerRecord
import scala.collection.immutable
import scala.concurrent.Future
object AkkaKafkaHelper {
private val committer = new Committer {
def commit(offsets: immutable.Seq[PartitionOffset]): Future[Done] = Future.successful(Done)
def commit(batch: CommittableOffsetBatch): Future[Done] = Future.successful(Done)
}
def commitableMessage[K, V](key: K, value: V, topic: String = "topic", partition: Int = 0, offset: Int = 0, groupId: String = "group"): CommittableMessage[K, V] = {
val partitionOffset = PartitionOffset(GroupTopicPartition(groupId, topic, partition), offset)
val record = new ConsumerRecord(topic, partition, offset, key, value)
CommittableMessage(record, ConsumerStage.CommittableOffsetImpl(partitionOffset)(committer))
}
}
Use Consumer.committableSource to create a Source[CommittableMessage[K, V], Control]. The idea is that in your test you would produce one or more messages onto some topic, then use committableSource to consume from that same topic.
The following is an example that illustrates this approach: it's a slightly adjusted excerpt from the IntegrationSpec in the Akka Streams Kafka project. IntegrationSpec uses scalatest-embedded-kafka, which provides an in-memory Kafka instance for ScalaTest specs.
Source(1 to 100)
.map(n => new ProducerRecord(topic1, partition0, null: Array[Byte], n.toString))
.runWith(Producer.plainSink(producerSettings))
val consumerSettings = createConsumerSettings(group1)
val (control, probe1) = Consumer.committableSource(consumerSettings, TopicSubscription(Set(topic1)))
.filterNot(_.record.value == InitialMsg)
.mapAsync(10) { elem =>
elem.committableOffset.commitScaladsl().map { _ => Done }
}
.toMat(TestSink.probe)(Keep.both)
.run()
probe1
.request(25)
.expectNextN(25).toSet should be(Set(Done))
probe1.cancel()
Await.result(control.isShutdown, remainingOrDefault)
I have this code below:
import java.util.Properties
import com.google.gson._
import com.typesafe.config.ConfigFactory
import org.apache.flink.cep.scala.pattern.Pattern
import org.apache.flink.cep.scala.CEP
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010
import org.apache.flink.streaming.util.serialization.SimpleStringSchema
object WindowedWordCount {
val configFactory = ConfigFactory.load()
def main(args: Array[String]) = {
val brokers = configFactory.getString("kafka.broker")
val topicChannel1 = configFactory.getString("kafka.topic1")
val props = new Properties()
...
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val dataStream = env.addSource(new FlinkKafkaConsumer010[String](topicChannel1, new SimpleStringSchema(), props))
val partitionedInput = dataStream.keyBy(jsonString => {
val jsonParser = new JsonParser()
val jsonObject = jsonParser.parse(jsonString).getAsJsonObject()
jsonObject.get("account")
})
val priceCheck = Pattern.begin[String]("start").where({jsonString =>
val jsonParser = new JsonParser()
val jsonObject = jsonParser.parse(jsonString).getAsJsonObject()
jsonObject.get("account").toString == "iOS"})
val pattern = CEP.pattern(partitionedInput, priceCheck)
val newStream = pattern.select(x =>
x.get("start").map({str =>
str
})
)
newStream.print()
env.execute()
}
}
For some reason in the above code at the newStream.print() nothing is being printed out. I am positive that there is data in Kafka that matches the pattern that I defined above but for some reason nothing is being printed out.
Can anyone please help me spot an error in this code?
EDIT:
class TimestampExtractor extends AssignerWithPeriodicWatermarks[String] with Serializable {
override def extractTimestamp(e: String, prevElementTimestamp: Long) = {
val jsonParser = new JsonParser()
val context = jsonParser.parse(e).getAsJsonObject.getAsJsonObject("context")
Instant.parse(context.get("serverTimestamp").toString.replaceAll("\"", "")).toEpochMilli
}
override def getCurrentWatermark(): Watermark = {
new Watermark(System.currentTimeMillis())
}
}
I saw on the flink doc that you can just return prevElementTimestamp in the extractTimestamp method (if you are using Kafka010) and new Watermark(System.currentTimeMillis) in the getCurrentWatermark method.
But I don't understand what prevElementTimestamp is or why one would return new Watermark(System.currentTimeMillis) as the WaterMark and not something else. Can you please elaborate on why we do this on how WaterMark and EventTime work together please?
You do setup your job to work in EventTime, but you do not provide timestamp and watermark extractor.
For more on working in event time see those docs. If you want to use the kafka embedded timestamps this docs may help you.
In EventTime the CEP library buffers events upon watermark arrival so to properly handle out-of-order events. In your case there are no watermarks generated, so the events are buffered infinitly.
Edit:
For the prevElementTimestamp I think the docs are pretty clear:
There is no need to define a timestamp extractor when using the timestamps from Kafka. The previousElementTimestamp argument of the extractTimestamp() method contains the timestamp carried by the Kafka message.
Since Kafka 0.10.x Kafka messages can have embedded timestamp.
Generating Watermark as new Watermark(System.currentTimeMillis) in this case is not a good idea. You should create Watermark based on your knowledge of the data. For information on how Watermark and EventTime work together I could not be more clear than the docs