Write a class support for yield keywords in Scala - scala

How can I make a class support for keywords in scala?
e.g:
class A(data: String) {
...
}
val a = A("I'm A")
for {
data <- a
} yield {
data
}
Thanks

The compiler rewrites all for comprehensions into the necessary constituent parts: map(), flatMap(), withFilter(), foreach(). That's why many Scala syntax rules are suspended inside the for comprehension, e.g. can't create variables in the standard fashion, val x = 2, and can't throw in println() statements.
In your example, this will work.
class A(data: String) {
def map[B](f: (String) => B) = f(data)
}
val a = new A("I'm A")
for {
data <- a
} yield {
data
} // res0: String = I'm A
But note that if you have multiple generators (the <- is a generator) then only the final one is turned into a map() call. The previous generators are all flatMap() calls.
If your for comprehension includes an if condition then you'll need a withFilter() as well.
I recommend avoiding for comprehensions until you have a good feel for how they work.

Related

Scala: for-comprehension for chain of operations

I have a task to transform the following code-block:
val instance = instanceFactory.create
val result = instance.ackForResult
to for-comprehension expression.
As for-comprehension leans on enumeration of elements, I tried to get around it with wrapper class:
case class InstanceFactoryWrapper(value:InstanceFactory) {
def map(f: InstanceFactory => Instance): Instance
= value.create()
}
where map-method must handle only one element and return a single result: Instance
I tested this approach with this expression:
for {
mediationApi <- InstanceFactoryWrapper(instanceFactoryWrapper)
}
But it does't work: IDEA recommends me to use foreach in this part. But "foreach" doesn't return anything, as opposed to map.
What am I doing wrong?
Simply put when working with List\Option\Either or other lang types comprehensions are useful to transform nested map\flatMap\withFilter into sequences.
Use custom classes in for-comprehension
But what about your own classes or other 3rd party ones?
You need to implement monadic operations in order to use them in for-comprehensions.
The bare minimum: map and flatMap.
Take the following example with a custom Config class:
case class Config[T](content: T) {
def flatMap[S](f: T => Config[S]): Config[S] =
f(content)
def map[S](f: T => S): Config[S] =
this.copy(content = f(content))
}
for {
first <- Config("..")
_ = println("Going through a test")
second <- Config(first + "..")
third <- Config(second + "..")
} yield third
This is how you enable for-comprehension.

How to functionally handle a logging side effect

I want to log in the event that a record doesn't have an adjoining record. Is there a purely functional way to do this? One that separates the side effect from the data transformation?
Here's an example of what I need to do:
val records: Seq[Record] = Seq(record1, record2, ...)
val accountsMap: Map[Long, Account] = Map(record1.id -> account1, ...)
def withAccount(accountsMap: Map[Long, Account])(r: Record): (Record, Option[Account]) = {
(r, accountsMap.get(r.id))
}
def handleNoAccounts(tuple: (Record, Option[Account]) = {
val (r, a) = tuple
if (a.isEmpty) logger.error(s"no account for ${record.id}")
tuple
}
def toRichAccount(tuple: (Record, Option[Account]) = {
val (r, a) = tuple
a.map(acct => RichAccount(r, acct))
}
records
.map(withAccount(accountsMap))
.map(handleNoAccounts) // if no account is found, log
.flatMap(toRichAccount)
So there are multiple issues with this approach that I think make it less than optimal.
The tuple return type is clumsy. I have to destructure the tuple in both of the latter two functions.
The logging function has to handle the logging and then return the tuple with no changes. It feels weird that this is passed to .map even though no transformation is taking place -- maybe there is a better way to get this side effect.
Is there a functional way to clean this up?
I could be wrong (I often am) but I think this does everything that's required.
records
.flatMap(r =>
accountsMap.get(r.id).fold{
logger.error(s"no account for ${r.id}")
Option.empty[RichAccount]
}{a => Some(RichAccount(r,a))})
If you're using scala 2.13 or newer you could use tapEach, which takes function A => Unit to apply side effect on every element of function and then passes collection unchanged:
//you no longer need to return tuple in side-effecting function
def handleNoAccounts(tuple: (Record, Option[Account]): Unit = {
val (r, a) = tuple
if (a.isEmpty) logger.error(s"no account for ${record.id}")
}
records
.map(withAccount(accountsMap))
.tapEach(handleNoAccounts) // if no account is found, log
.flatMap(toRichAccount)
In case you're using older Scala, you could provide extension method (updated according to Levi's Ramsey suggestion):
implicit class SeqOps[A](s: Seq[A]) {
def tapEach(f: A => Unit): Seq[A] = {
s.foreach(f)
s
}
}

Scala macros: Emit for comprehensions from macros

Trying to emit a for yield block from a blackbox macro, but I'm failing to understand how you can create the block with valid syntax.
So below source is a hardcoded param name as this block is later inserted inside a method that will have the matching param name. params is just params: Seq[c.universe.ValDef], enclosing the case class fields.
def extract(source: Source): Option[CaseClass] = { ... }
val extractors = accessors(c)(params) map {
case (nm, tpe) => {
val newTerm = TermName(nm.toString + "Opt")
q"""$newTerm <- DoStuff[$tpe].apply("$nm", source)"""
}
}
val extractorNames = accessors(c)(params) map {
case (nm, tpe) => TermName(nm.toString + "Opt")
}
This is basically taking a case class, and outputting a for yield black to basically recreate the case class from a comprehension.
Every field in the case class of the form name: Type is transformed to a set of extractors that yield the same case class instance back if the for comprehension is successful.
case class Test(id: Int, text: String)
Will be macro transformed to the following, where Extract is just a type class and Extract.apply[T : Extract] is just materialising the context bound with implicitly[Extract[T]]:
for {
idOpt <- Extract[Int].apply("id", source): Option[Int]
textOpt <- Extract[String].apply("text", source): Option[String]
} yield Test(idOpt, textOpt)
The problem comes in having to quote the inner for yield expressions with and output a <- b blocks.
def extract(source: Source): Option[$typeName] = {
for {(..$extractors)} yield $companion.apply(..$extractorNames)
}
The error is ';' expected but '<-' found, which is pretty obvious as a <- b is invalid Scala by itself. What is the correct way to generate and quasiquote the expression block such that the above would work?
Here is a list of all the different kinds of quasiquotes.
There you can see that to express the a <- b syntax you need the fq interpolator.
So that code will probably become:
val extractors = accessors(c)(params) map {
case (nm, tpe) => {
val newTerm = TermName(nm.toString + "Opt")
fq"""$newTerm <- DoStuff[$tpe].apply("$nm", source)"""
}
}
And then with the normal interpolator:
q"for (..$extractors) yield $companion.apply(..$extractorNames)"

Conditional chain of futures

I have a sequence of parameters. For each parameter I have to perform DB query, which may or may not return a result. Simply speaking, I need to stop after the first result is non-empty. Of course, I would like to avoid doing unnecessary calls. The caveat is - I need to have this operation(s) contained as a another Future - or any "most reactive" approach.
Speaking of code:
//that what I have
def dbQuery(p:Param): Future[Option[Result]] = {}
//my list of params
val input = Seq(p1,p2,p3)
//that what I need to implements
def getFirstNonEmpty(params:Seq[Param]): Future[Option[Result]]
I know I can possibly just wrap entire function in yet another Future and execute code sequentially (Await? Brrr...), but that not the cleanest solution.
Can I somehow create lazy initialized collection of futures, like
params.map ( p => FutureWhichWontStartUnlessAskedWhichWrapsOtherFuture { dbQuery(p) }).findFirst(!_.isEmpty())
I believe it's possible!
What do you think about something like this?
def getFirstNonEmpty(params: Seq[Param]): Future[Option[Result]] = {
params.foldLeft(Future.successful(Option.empty[Result])) { (accuFtrOpt, param) =>
accuFtrOpt.flatMap {
case None => dbQuery(param)
case result => Future.successful(result)
}
}
}
This might be overkill, but if you are open to using scalaz we can do this using OptionT and foldMap.
With OptionT we sort of combine Future and Option into one structure. We can get the first of two Futures with a non-empty result using OptionT.orElse.
import scalaz._, Scalaz._
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
val someF: Future[Option[Int]] = Future.successful(Some(1))
val noneF: Future[Option[Int]] = Future.successful(None)
val first = OptionT(noneF) orElse OptionT(someF)
first.run // Future[Option[Int]] = Success(Some(1))
We could now get the first non-empty Future from a List with reduce from the standard library (this will however run all the Futures) :
List(noneF, noneF, someF).map(OptionT.apply).reduce(_ orElse _).run
But with a List (or other collection) we can't be sure that there is at least one element, so we need to use fold and pass a start value. Scalaz can do this work for us by using a Monoid. The Monoid[OptionT[Future, Int]] we will use will supply the start value and combine the Futures with the orElse used above.
type Param = Int
type Result = Int
type FutureO[x] = OptionT[Future, x]
def query(p: Param): Future[Option[Result]] =
Future.successful{ println(p); if (p > 2) Some(p) else None }
def getFirstNonEmpty(params: List[Param]): Future[Option[Result]] = {
implicit val monoid = PlusEmpty[FutureO].monoid[Result]
params.foldMap(p => OptionT(query(p))).run
}
val result = getFirstNonEmpty(List(1,2,3,4))
// prints 1, 2, 3
result.foreach(println) // Some(3)
This is an old question, but if someone comes looking for an answer, here is my take. I solved it for a use case that required me to loop through a limited number of futures sequentially and stop when the first of them returned a result.
I did not need a library for my use-case, a light-weight combination of recursion and pattern matching was sufficient. Although the question here does not have the same problem as a sequence of futures, looping through a sequence of parameters would be similar.
Here would be the pseudo-code based on recursion.
I have not compiled this, fix the types being matched/returned.
def getFirstNonEmpty(params: Seq[Param]): Future[Option[Result]] = {
if (params.isEmpty) {
Future.successful(None)
} else {
val head = params.head
dbQuery(head) match {
case Some(v) => Future.successful(Some(v))
case None => getFirstNonEmpty(params.tail)
}
}
}

Does scala have a lazy evaluating wrapper?

I want to return a wrapper/holder for a result that I want to compute only once and only if the result is actually used. Something like:
def getAnswer(question: Question): Lazy[Answer] = ???
println(getAnswer(q).value)
This should be pretty easy to implement using lazy val:
class Lazy[T](f: () => T) {
private lazy val _result = Try(f())
def value: T = _result.get
}
But I'm wondering if there's already something like this baked into the standard API.
A quick search pointed at Streams and DelayedLazyVal but neither is quite what I'm looking for.
Streams do memoize the stream elements, but it seems like the first element is computed at construction:
def compute(): Int = { println("computing"); 1 }
val s1 = compute() #:: Stream.empty
// computing is printed here, before doing s1.take(1)
In a similar vein, DelayedLazyVal starts computing upon construction, even requires an execution context:
val dlv = new DelayedLazyVal(() => 1, { println("started") })
// immediately prints out "started"
There's scalaz.Need which I think you'd be able to use for this.