MATLAB function for calculating the area of polygon using sum of triangle areas - matlab

I have a question regarding a MATLAB function I have written. It takes as input a set of x and y vertex coordinates in the form of two row vectors, and uses these to calculate the area of a polygon.
For the single triangle case it runs fine (although I KNOW my code could be made more efficient and to look better). However, I am to use this function in a script that takes a set of x and y points and calculates the perimeter and area of the polygon bounded by the coordinate points.
Using the function I created for the area of a triangle, the area of the polygon can be calculated based on these steps:
there are N - 2 triangles (where N is the amount of sides to the polygon)
my function calculates the area of these triangles (using A = 0.5(x1*(y2-y3)-x2*(y1-y3)+x3(y1-y2))
sum the triangular areas to find the area of the polygon.
I have my code written below. My perimeter function works very well, but I am not sure how to implement the area function for the triangle into the polygon area program. I believe that my formula is correct, and the problem lies somewhere in the loop indexing.
Any suggestions on how to proceed from what I have below would be appreciated!
function [tri_area] = area2dd(coords_x,coords_y)
%%Input argument check
narginchk(2,2) ;
%%Calculation
% % ii = 1:length(coords_x)-2;
% % jj = 1:length(coords_y)-2;
if length(coords_x) == 3
ii = 1:length(coords_x) -2;
jj = 1:length(coords_y) -2;
tri_area = sum(abs(0.5.*(coords_x(ii).*(coords_y(jj+1)-21coords_y(jj+2))-coords_x(ii+1)...
.*(coords_y(jj)-coords_y(jj+2))+coords_x(ii+2).*(coords_y(jj)-23coords_y(jj+1)))))
else
ii = 1:3:length(coords_x) -2;
jj = 1:3:length(coords_y) -2;
tri_area = sum(abs(0.5.*(coords_x(ii).*(coords_y(jj+1)-29coords_y(jj+2))-coords_x(ii+1)...
.*(coords_y(jj)-coords_y(jj+2))+coords_x(ii+2).*(coords_y(jj)-31coords_y(jj+1)))))
end

Ok, so for any interested parties or anyone else who might be solving a problem like mine I have the final WORKING code written below. This function can do double duty. If the coordinate vectors input are in 3 pairs then the function will calculate the area of a triangle. If there are more than 3 sets of coordinate pairs then it will calculate the area of the polygon bounded by those coordinates.
narginchk(2,2) ;
if length(coords_x) == 3
ii = 1
jj = 1
area = sum(abs(0.5.*(coords_x(ii).*(coords_y(jj+1)-coords_y(jj+2))- ...
coords_x(ii+1).*(coords_y(jj)-coords_y(jj+2))+coords_x(ii+2).*...
(coords_y(jj)-coords_y(jj+1))))) ;
else
ii = 1:length(coords_x) -3 ;
jj = 1:length(coords_y) -3 ;
area = sum((abs(0.5.*(coords_x(1).*(coords_y(jj+1)-coords_y(jj+2)) ...
-coords_x(ii+1)...
.*(coords_y(1)-coords_y(jj+2))+coords_x(ii+2).*(coords_y(1)- ...
coords_y(jj+1)))))) ;
end
end

Related

mean value in a sphere

I'm trying to calculate the mean value of the pixels inside a circle. In the future this needs to be extended to 3D, but for now a 2D sollution would already help me out.
As can be seen in the image, some pixels are entirely inside the circle, but some are only partly inside the circle. The ones partly in the circle also need to contribute only partly to the mean value. The pixels are square. This will simplify the mathematics I hope.
I can calculate the distance from the pixelcorners to the central point, from this you can find the pixels enterly inside and enterly outside. The rest needs correction. But how to find this correction.
[edit] thanks to Heath Raftery the problem is solved! [/edit]
the integral of a circle with radius r
As an example: I want to know the average pixelvalue of pixels in this circle. I know it is 0.3425, since 34.25% of the circle has a value of 1 and the rest is 0.
Function to check what part of a pixel is in the circle:
function [ a ] = incirc( x,y,r )
%only handles the top right quadrant of a circle
if x<0||y<0,error('only positive x,y');end
%integral of sqrt(r^2-x^2) dx
F = #(x,r) (1/2)*(x*sqrt(r^2-x^2)+r^2*atan(x/sqrt(r^2-x^2)));
%find corner locations
x=[x-0.5,x+0.5];
y=[y-0.5,y+0.5];
d = sqrt(x.^2+y.^2); %distance to closed and furthest corner
if max(d)<r,a=1;return;end %inside circle
if min(d)>r,a=0;return;end %outside circle
%intersections with edges (r^2 = x^2+y^2)
inters = [sqrt(r^2-y(1)^2),sqrt(r^2-y(2)^2),sqrt(r^2-x(1)^2),sqrt(r^2-x(2)^2)]; %x(1) x(2) y(1) y(2)
%remove imaginary and out of range intersections
inters(imag(inters)~=0)=NaN;
inters(inters<1E-5)=NaN; %to find values that are zero
inters([~((x(1)<inters(1:2))&(inters(1:2)<x(2))),~((y(1)<inters(3:4))&(inters(3:4)<y(2)))])=NaN;
idx = find(~isnan(inters));
if numel(idx)~=2,error('need two intersections of circle with pixel');end
%check area of pixel inside circumference
if all(idx==[1,2]) %2 intersections on y-edge
a=(F(y(2),r)-F(y(1),r)) - x(1); %area
elseif all(idx==[3,4]) %2 intersections on x-edge
a=(F(x(2),r)-F(x(1),r)) - y(1); %area
elseif all(idx==[1,3]) %one intersection on y-edge one on x-edge (left&bottom)
a=(F(inters(1),r)-F(x(1),r))- (y(1)*(inters(1)-x(1)));
elseif all(idx==[2,4]) %one intersection on y-edge one on x-edge (top&right)
a=(inters(2)-x(1))+(F(x(2),r)-F(inters(2),r))-(y(1)*(x(2)-inters(2)));
else
error('geometry')
end
a=real(a);
if a<0||a>1
error('computational error');
end
end
Script to test the function
M = ones(100); %data
M(1:50,:)=0;
pos=[50.2,50];
r = 2;
%calculate what the result should be
h=50-pos(2)+0.5;
A=pi*r^2;
wedge = acos(h/r)/pi;
triangle = h*sqrt(r^2-h^2);
res=(A*wedge-triangle)/A
S=0;N=0;
for i = 1:size(M,1)
for j = 1:size(M,2)
x=abs(j-pos(1));
y=abs(i-pos(2));
n=incirc( x,y,r );
M_(i,j)=n;
S = S+M(i,j)*n;
N = N+n;
end
end
result = S/N
result = 0.3425
You can see the algorithm finds the part of the pixel in the circle.
The question is missing a question, but I'll assume that it's not how to calculate whether pixels are fully inside or outside the circle. That's a relatively simple task. That is, a pixel is fully inside if the furtherest corner of the pixel to the centre is less than a radius away from the centre, and a pixel is fully outside if the closest corner of the pixel to the centre is more than a radius away from the centre.
The question of what proportion of pixels on the circumference fall within the circumference is much trickier. There are two fundamental solutions:
Exact and hard.
Approximate and a bit easier.
In both cases, note the horizontal and vertical symmetry means only the top right quadrant need be considered.
Then, for (1), translate the circle centre to the origin (0, 0) and treat the circumference as the function y(x) = sqrt(r^2 - x^2). Then, the area of an overlapping pixel within the circle is the integral:
integral(y(x) - y0, from x0 to x1, with respect to x)
where y0 is the bottom coordinate of the pixel, x0 is the left coordinate and x1 is the right coordinate.
This integral can be solved exactly with a trigonometric identity and a trigonometric substitution.
For (2), just generate a set of random points within the pixel and count how many of them fall within the circumference. As the set gets larger, the proportion of points that fall within the circumference to the count of all point approaches the proportion of the pixel within the circumference.
You can use inpolygon, to get the indices which lie inside the circle, once you have those indices you can get your pixels and do what you want.
M = rand(100); %data
[nx,ny] = size(M) ;
[X,Y] = meshgrid(1:ny,1:nx) ;
pos=[20,20];
r = 5;
phi=linspace(0,2*pi,100);
imagesc(M);
axis image
hold on
plot(pos(1),pos(2),'rx')
xc = pos(1)+r*sin(phi) ;
yc = pos(2)+r*cos(phi) ;
plot(xc,yc,'-r');
% hold off
%% get indices which are inside the circle
idx = inpolygon(X(:),Y(:),xc,yc) ;
xi = X(idx) ; yi = Y(idx) ;
plot(xi,yi,'.r')
mypixels = M(idx) ;
You can also use rangesearch to get the points lying within the given radius of the circle. As below:
M = rand(100); %data
[nx,ny] = size(M) ;
[X,Y] = meshgrid(1:ny,1:nx) ;
pos=[20,20];
r = 5;
phi=linspace(0,2*pi,100);
imagesc(M);
axis image
hold on
plot(pos(1),pos(2),'rx')
xc = pos(1)+r*sin(phi) ;
yc = pos(2)+r*cos(phi) ;
plot(xc,yc,'-r');
% hold off
%% Use nearest neighbour search
idx = rangesearch([X(:),Y(:)],pos,r) ;
xi = X(idx{1}) ; yi = Y(idx{1}) ;
plot(xi,yi,'.r')
mypixels = M(idx{1}) ;

Matlab - Find Coordinates between a straight line and a perimeter

I segmented a mouse and get its image-properties using bwlabel. Thereby I have access to the position of the centroid and the orientation of the mouse. I also get the perimeter of the mouse using bwperim.
I want to find the two points of the straight line passing through the centroid and having the same direction than the orientation of the mouse cutting the perimeter.
I find the equation of the straight line using that code :
% E is a 2*2 matrix containing the coordinates of the centroid and the
% coordinates of the point which belong to the straight line and making
% the right angle given by the orientation
coeffs = polyfit(E(:,1),E(:,2),1);
% Create the equation of the straight line
x = 1:width;
yfit = coeffs(1)*x+coeffs(2);
% Make sure there are only int values.
yfit = uint16(yfit);
I convert my values to uint16 because i want to fill a new matrix that I will compare with the matrix containing the perimeter. Here is what I do then :
% Create a matrix of zeros and set to 1 all the pixels which belong to the
% straight line
k = 1;
temp = false;
m = false(size(iPerim));
while temp~=true
temp = false;
if yfit(k) > 0
m(yfit(k),k)=1;
temp = true;
end
k = k+1;
end
[t,p] = ind2sub(size(m), find(m==1));
minM = [min(p),min(t)];
% complete the straight line to don't have little holes
x = linspace(minM(1),D(1),width);
y = coeffs(1)*x+coeffs(2);
idx = sub2ind(size(m),round(y),round(x));
m(idx) = 1;
Then I compare m with iPerim which is the matrix containing my perimeter:
% Compare the matrix of the perimeter and the matrix of the straight line
% and find the two points in common. It is the points where the straight
% line cut the perimeter
p = m & iPerim;
% Extract thoses coordinates
[coordsY,coordsX] = ind2sub(size(p), find(p==1));
Well I am a new user of Matlab so I think this is not a elegant solution but there is the result:
Matrix m
Perimeter in which I plot yfit
As you can see the algorithm detects only one point and not the second one (the yellow spot)... I figure why but I can't find the solution. It is because the line straight is cutting the perimeter through a diagonal but there are not coordinates in common...
Somebody has a solution to my problem ? And of course I am taking any advises conerning my code :)
Thank you very much !
Edit: If there is a easier solution I take it obviously
When the coordinate of the point where the mouse-perimeter and the line cross are E(2,:), then the position of this point in the line is where the distance is minimal. E.g. like:
[xLine, yLine] = find(m); % x,y positions of the line
dX = abs(xline-E(2,1)) % x-distance to x-coordinate of direction-point
dY = abs(yLine-E(2,2)) % y-distance to y-coordinate of direction-point
distP = sqrt(dX.^2+dY.^2) % distance of line-points to directon-point
[~,indMin] = min(distP); % index of line-point which has the minimum distance
xPoint = xLine(indMin(1));
yPoint = yLine(indMin(1));
The abs and sqrtfunctions are not necessary here for finding the right point, only for the correct intermediate values...
From the Matlab Documentation about ind2sub:
For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns the same values as [I,J] = find(A>5).

How can I make 3d plots of planes by using spreadsheet in matlab

pointA=[9.62579 15.7309 3.3291];
pointB=[13.546 25.6869 3.3291];
pointC=[23.502 21.7667 -3.3291];
pointD=[19.5818 11.8107 -3.3291];
points=[pointA' pointB' pointC' pointD'];
fill3(points(1,:),points(2,:),points(3,:),'r')
grid on
alpha(0.3)
This code will show a filled plane(Cant add images yet T.T)
Now here is my problem. On a spreadsheet, I have x,y,z coordinates of thousands of points. The 4 consecutive points form a plane like the one shown. How do I make a code such that for every 4 consecutive points, it makes a filled plane.
Basically, if I have 400 points, I want the code to plot 100 planes.
Assuming your data are a matrix, m = (400,3)
m = rand(400,3);
for i = 1:length(m);
m2 = m'; % Transpose
end
Create a 3-D matrix in which 'j' represents each set of points:
m3=[];
%Not the most elegant way to cycle through every four points but it works!
z = 0:(length(m2)/4); z1 = (z*4)+1; z1 = z1(:,1:length(z)-1);
for j = 1:length(z1);
m3(:,:,j) = m2(:,z1(j):(z1(j)+3));
end
'j' now has a total length = 100 - representing the amount planes;
fill3(m3(1,:,1),m3(2,:,1),m3(3,:,1),'r');
% Cycle through planes- make a new figure for each plane;
for j = 1:length(z1);
fill3(m3(1,:,j),m3(2,:,j),m3(3,:,j),'r');
end
clear all, close all, clc
pointA=rand(99,1);
pointB=rand(99,1);
pointC=rand(99,1);
pointD=rand(99,1);
pointAmat = reshape(pointA,3,1,[]);
pointBmat = reshape(pointB,3,1,[]);
pointCmat = reshape(pointC,3,1,[]);
pointDmat = reshape(pointD,3,1,[]);
points=[pointAmat pointBmat pointCmat pointDmat];
for i = 1:size(points,3)
fill3(points(1,:,i),points(2,:,i),points(3,:,i),'r')
hold all
end
grid on
alpha(0.3)
Hope this helps.

Finding 2D area defined by contour lines in Matlab

I am having difficulty with calculating 2D area of contours produced from a Kernel Density Estimation (KDE) in Matlab. I have three variables:
X and Y = meshgrid which variable 'density' is computed over (256x256)
density = density computed from the KDE (256x256)
I run the code
contour(X,Y,density,10)
This produces the plot that is attached. For each of the 10 contour levels I would like to calculate the area. I have done this in some other platforms such as R but am having trouble figuring out the correct method / syntax in Matlab.
C = contourc(density)
I believe the above line would store all of the values of the contours allowing me to calculate the areas but I do not fully understand how these values are stored nor how to get them properly.
This little script will help you. Its general for contour. Probably working for contour3 and contourf as well, with adjustments of course.
[X,Y,Z] = peaks; %example data
% specify certain levels
clevels = [1 2 3];
C = contour(X,Y,Z,clevels);
xdata = C(1,:); %not really useful, in most cases delimters are not clear
ydata = C(2,:); %therefore further steps to determine the actual curves:
%find curves
n(1) = 1; %n: indices where the certain curves start
d(1) = ydata(1); %d: distance to the next index
ii = 1;
while true
n(ii+1) = n(ii)+d(ii)+1; %calculate index of next startpoint
if n(ii+1) > numel(xdata) %breaking condition
n(end) = []; %delete breaking point
break
end
d(ii+1) = ydata(n(ii+1)); %get next distance
ii = ii+1;
end
%which contourlevel to calculate?
value = 2; %must be member of clevels
sel = find(ismember(xdata(n),value));
idx = n(sel); %indices belonging to choice
L = ydata( n(sel) ); %length of curve array
% calculate area and plot all contours of the same level
for ii = 1:numel(idx)
x{ii} = xdata(idx(ii)+1:idx(ii)+L(ii));
y{ii} = ydata(idx(ii)+1:idx(ii)+L(ii));
figure(ii)
patch(x{ii},y{ii},'red'); %just for displaying purposes
%partial areas of all contours of the same plot
areas(ii) = polyarea(x{ii},y{ii});
end
% calculate total area of all contours of same level
totalarea = sum(areas)
Example: peaks (by Matlab)
Level value=2 are the green contours, the first loop gets all contour lines and the second loop calculates the area of all green polygons. Finally sum it up.
If you want to get all total areas of all levels I'd rather write some little functions, than using another loop. You could also consider, to plot just the level you want for each calculation. This way the contourmatrix would be much easier and you could simplify the process. If you don't have multiple shapes, I'd just specify the level with a scalar and use contour to get C for only this level, delete the first value of xdata and ydata and directly calculate the area with polyarea
Here is a similar question I posted regarding the usage of Matlab contour(...) function.
The main ideas is to properly manipulate the return variable. In your example
c = contour(X,Y,density,10)
the variable c can be returned and used for any calculation over the isolines, including area.

Point Cloud Generation

I have a 3-D geometrical shape which I have to convert into a point cloud.
The resultant point cloud can be considered equivalent to a point cloud output from a Laser Scan of the object.
No mesh generation is neeeded
The points generated may be evenly spaced, or maybe just randomly spaced - doesn't matter
The 3-D shape can be provided in the form of a 3-D mathematical formula
This has to be done using MATLAB
It's difficult to answer without an example but it sounds like you just want to perform a montecarlo simulation?
Lets say your shape is defined by the function f and that you have X, Y limits stored in two element vector e.g. xlim = [-10 10] i.e. all possible x values of this shape lie between x = -10 and x = 10 then I would suggest that you make f return some sort of error code if there is no value for a specific x-y pair. I'm going to assume that will be NaN. So f(x,y) is a function you are writing that either returns a z if it can or NaN if it can't
n= 10000;
counter = 1;
shape = nan(n, 3)
while counter < n
x = rand*diff(xlim) + mean(xlmin);
y = rand*diff(ylim) + mean(ylim);
z = f(x,y)
if ~isnan(z)
shape(counter, :) = [x, y, z];
counter = counter + 1
end
end
So the above code will generate 10000 (non unique, but that's easily adapted for) points randomly sample across your shape.
Now after typing this I realise that perhaps your shape is actually not all that big and maybe you can uniformly sample it rather than randomly:
for x = xlim(1):xstep:xlim(2)
for y = ylim(1):ystep:ylim(2)
shape(counter, :) = [x, y, f(x,y)];
end
end
or if you write f to be vectorized (preferable)
shape = [(xlim(1):xstep:xlim(2))', (ylim(1):ystep:ylim(2))', f(xlim(1):xstep:xlim(2), ylim(1):ystep:ylim(2));
and then either way
shape(isnan(shape(:, 3), :) = []; %remove the points that fell outside the shape
Here is the code to create a Cloud image with a Depth image from a PrimeSense Camera.
The input/Ouput of this function :
-inputs
depth -depth map
topleft -topleft coordinates of the segmented image in the whole image
-outputs
pclouds -3d point clouds
MatLab code :
depth = double(depth);
% Size of camera image
center = [320 240];
[imh, imw] = size(depth);
constant = 570.3;
% convert depth image to 3d point clouds
pclouds = zeros(imh,imw,3);
xgrid = ones(imh,1)*(1:imw) + (topleft(1)-1) - center(1);
ygrid = (1:imh)'*ones(1,imw) + (topleft(2)-1) - center(2);
pclouds(:,:,1) = xgrid.*depth/constant;
pclouds(:,:,2) = ygrid.*depth/constant;
pclouds(:,:,3) = depth;
distance = sqrt(sum(pclouds.^2,3));
Edit : This source is from this current article http://www.cs.washington.edu/rgbd-dataset/software.html
You can find some other Cloud function in MatLab and C++ that can be interest you.