Cassandra as replacement to PostgreSQL - postgresql

Is Cassandra with multiple nodes a good choice as replacement to single node PostgreSql? Data being stored is a time series. It is about tens of gigabytes already and is expected to grow. Database should be integrated into pipeline with apache spark as source and possibly result destination.
What is needed:
1) redundancy: one node failure shouldn't stop the system (all data should be available)
2) speed: more nodes - less time per single insert/select for one client
3) concurrency: more nodes - better speed for simultaneous inserts/selects from different clients

For your points:
1) This is a question which is up to you while choosing the keyspace replication factor RF and the consistency levels CL of your inserts and selects. To be available and consistent you need RF=3 on your and CL.QUORUM for both insert and select for hande loss of one node (for QUORUM you need RF/2+1 nodes online, 3/2+1=2 - integer division, with RF=5 you would neeed 5/2+1=3 nodes online, so you can handle loss of 2).
2) A single request will be handled by a single node as coordinator in your cluster. You do not gain much performance here with singe and synchronous requsts. If you issue any requests and use async you will split your requests across more nodes and gain performance.
3) With more clients you have the same effect - the coordinator will be picked at random (ok there is the TokenAwarePolicy which will pick a appropriate coordinator).

You've mentioned that you use time series data.
1. Naturally, you can vary the replication factor and consistency level. So yes, Cassandra would be good as a replacement.
2. The insert would be really fast as Cassandra writes memory first. So yes, Cassandra would be good as a replacement.
3. Cassandra has linear horizontal scalability. So yes, Cassandra would be good as a replacement.
The drawbacks are that Cassandra is a key-value storage. So you should model the table structure around the queries. And PostgreSQL as RDBMS is more flexible as support the whole set of SQL operations.
You can read more about some pros and cons of using Cassandra with time series data here and here.

Related

Why MongoDB is Consistent not available and Cassandra is Available not consistent?

Mongo
From this resource I understand why mongo is not A(Highly Available) based on below statement
MongoDB supports a “single master” model. This means you have a master
node and a number of slave nodes. In case the master goes down, one of
the slaves is elected as master. This process happens automatically
but it takes time, usually 10-40 seconds. During this time of new
leader election, your replica set is down and cannot take writes
Is it for the same reason Mongo is said to be Consistent(as write did not happen so returning the latest data in system ) but not Available(not available for writes) ?
Till re-election happens and write operation is in pending, can slave return perform the read operation ? Also does user re-initiate the write operation again once master is selected ?
But i do not understand from another angle why Mongo is highly consistent
As said on Where does mongodb stand in the CAP theorem?,
Mongo is consistent when all reads go to the primary by default.
But that is not true. If under Master/slave model , all reads will go to primary what is the use of slaves then ? It further says If you optionally enable reading from the secondaries then MongoDB becomes eventually consistent where it's possible to read out-of-date results. It means mongo may not be be
consistent with master/slaves(provided i do not configure write to all nodes before return). It does not makes sense to me to say mongo is consistent if all
read and writes go to primary. In that case every other DB also(like cassandra) will be consistent . Is n't it ?
Cassandra
From this resource I understand why Cassandra is A(Highly Available ) based on below statement
Cassandra supports a “multiple master” model. The loss of a single
node does not affect the ability of the cluster to take writes – so
you can achieve 100% uptime for writes
But I do not understand why cassandra is not Consistent ? Is it because node not available for write(as coordinated node is not able to connect) is available for read which can return stale data ?
Go through: MongoDB, Cassandra, and RDBMS in CAP, for better understanding of the topic.
A brief definition of Consistency and availability.
Consistency simply means, when you write a piece of data in a system/distributed system, the same data you should get when you read it from any node of the system.
Availability means, the system should always be available for read/write operation.
Note: Most systems are not, only available or only consistent, they always offer a bit of both
With the above definition let's see where MongoDB and Cassandra fall in CAP.
MongoDB
As you said MongoDB is highly consistent when reads and write go to the same node(the default case). Further, you can choose in MongoDB to read from other secondary nodes instead of reading from only leader/primary.
Now, when you try to read data from secondary, your consistency will completely depend on, how you want to read data:
You could ask data which is up to maximum, say 5 seconds stale or,
You could just say, return data from majority of nodes for your select statement.
Same way when you write from your client into Mongo leader, you can say, a write is successful if the data is replicated to or stored on majority of servers.
Clearly, from above, we can say MongoDb can be highly consistent or eventually consistent based on how you read/write your data.
Now, what about availability? MongoDB is mostly always available, but, the only time when the leader is down, MongoDB can't accept writes, until it figures out the new leader. Hence, not highly available
So, MongoDB is categorized under CP.
What about Cassandra?
In Cassandra, there is no leader and any nodes can accept write, so the Cassandra cluster is always available for writes and reads even if some nodes go down.
What about consistency in Cassandra?
Same as MongoDB Cassandra can be eventually consistent or highly consistent based on how you read/write data.
You can give consistency levels in your read/write operations, For example:
read/write data from one node
read/write data from majority/quorum of nodes and more
Let's say you give a consistency level of one in your read/write operation. So, your write is successful as soon as data is written to one replica. Now, if your read request happens to go to the other replica where the data is not updated yet(could be due to high network latency or any other reason), you will end up reading the old data.
So, Cassandra is highly available but has configurable consistency levels and hence not always consistent.
In conclusion, in their default behavior, MongoDB falls under CP and Cassandra in AP.
Consistency in the CAP paradigm also includes "eventual consistency" which MongoDB supports. In a contrast to ACID systems, the read in CAP systems does not guarantee a safe return.
In simple words, this means that your Master could have an updated value, but if you do read from Slave, it does not necessarily return the updated value, and that it's okay to no have this updated value by design.
The concept of eventual consistency is explained in an excellent answer here.
By architecture, Cassandra is supposed to be consistent; it offers a special implementation of eventual consistency called the 'tunable consistency' which would meant that the client application may choose the method of handling this- it even offers multi data centre consistency support at low levels!
Most issues from row wise inconsistency in Cassandra comes from the fact that Cassandra uses client timestamps to determine which value is the most recent, and not the server side ones, which may be tad bit confusing to understand at first.
I hope this helps!
You have only to understand the "point-in-time": As you only write to mongodb master, even if slave is not updated, it is consistent, as it has all the data generated util the sync moment.
That is not true for cassandra. As cassandra uses a master-less model, there's no garantee that other nodes has all the data. At a certain time, a node can have certain recent data, and not having older data from nodes not yet synced. Cassandra will only be consistent if you stop write to all nodes and put them online. As soon the sync finished you have a consistent data.

Can Triggers be used in Cassandra for production for a multi datacenter environment?

I have a multi datacenter(DC1, DC2) environment having 3 nodes in each datacenter with RF=3 per datacenter.
Wanted to know if triggers can be used in production in a multi-datacenter environment. If so, how can this be achieved?
Case A: If I start inserting the data to DC1, it would have 3 replicas with in DC1 and is responsible of replicating the data to other data center DC2. Every time an insert into DC2 takes place, I would like to have an trigger event to occur and notify about the latest inserted value in the application. Is it possible?
Case B: If not point 2, is it good to insert the data simultaneously on to two datacenters DC1, DC2 (pointing to a single table) and avoid triggers concept?
Will it have any impact with the network traffic? Based on the latest timestamp, the table would have the last insert to the table which serves the purpose when queried from either of the regions.
Consistency level as LOCAL_QUORUM for Read
Consistency level as ONE for write
dse 4.8.2
With these Consistency levels, good consistency can be achieved lowering the latency for write operation across the datacenters.
Usecase:
We have an application (2 domains) for two different regions(DC1 &
DC2). Users of DC1 region uses domain 1 to access the application and
users of DC2 region uses domain 2 for the same. The data is ingested
to DC1 for the same region and when this replicates in its DC, the
coordinator of DC1 would replicate the data in other DC (DC2). The
moment Dc2 receives the data from DC1, we want to let the application
know about the latest information (Polling_ available using some
trigger event mechanism. Just wanted to know if this can be
implemented with cassandra triggers.
Can someone give the feedback on Case A and Case B? and which would be efficient in production.
Thanks
In either case stated above I am not sure why you want to use a trigger to notify your application that a value was inserted. In the scenario as I understand it your application already knows the newest value. Once the write has been successful you can notify your application with the newest value.
In both cases A and B you are working against some of the basic principals of how Cassandra functions. At an application level you should now need to worry about ensuring replication or eventual consistency of your data across multiple nodes and data centers. That is a large part of what Cassandra brings to the table.
In both Case A and B you are going to get multiple inserts of the same data for each write in each node it is replicated to in both data centers. As you write to DC1 it will also be written to DC2. If you then write to DC2 it will be written back to DC1. This will end with a large number of rows containing the same data and will increase disk requirements and compaction frequency. This will also increase network traffic as the two DC's talk back and forth to gain eventual consistency.
From what I can see here I also have to ask why you are doing an RF=3 on a 3 node cluster. This means that each node in each data center will have all the data essentially making each server a complete replica of the others. This seems like it may be overkill (depending on the data of course) as you are not going to get a lot of the scalability benefits that Cassandra offers.
Cassandra will handle the syncing of data between the data centers and across nodes so your application does not need to worry about this.
One other quick note - Currently your writes are using a CL=ONE. This means that you may end up with cross-DC latency on a write request. If you change this to LOCAL_ONE then you limit your CL query until one of the nodes in the local DC has written the value instead of possibly a node in the other DC. Cassandra will still handle the replication and syncing of the data.
Generally, multiple data center concept is used for workload separation(say different DCs for real-time query,analytic and search). Cassandra by itself takes care of replicating the data across multiple DCs.
So, coming to your question Case B doesn't seems a right option because:
Cassandra automatically replicates data across multiple DCs link
Case A is feasible.alerts/notifications using triggers
Hope, it will be helpful.

Does Cassandra support sharding?

Does Apache Cassandra support sharding?
Apologize that this question must seem trivial, but I cannot seem to find the answer. I have read that Cassandra was partially modeled after GAE's Big Table which shards on a massive scale. But most of the documentation I'm currently finding on Cassandra seems to imply that Cassandra does not partition data horizontally across multiple machines, but rather supports many many duplicate machines. This would imply that Cassandra is a good fit high availability reads, but would eventually break down if the write volume became very very high.
Cassandra does partition across nodes (because if you can't split it you can't scale it). All of the data for a Cassandra cluster is divided up onto "the ring" and each node on the ring is responsible for one or more key ranges. You have control over the Partitioner (e.g. Random, Ordered) and how many nodes on the ring a key/column should be replicated to based on your requirements.
This contains a pretty good overview. Basic architecture
Also, I highly recommend reading the Dynamo white paper. While Cassandra is different than Dynamo in many ways, conceptually they stem from the same roots. Check it out: Dynamo White Paper
yes, cassandra supports sharding, but in its own way.
In Mongodb each secondary node contains full data of primary node but in Cassandra, each secondary node has responsibility of keeping only some key partitions of data.

Redis versus Cassandra(Bigtable data model)

Suppose I need to do the following operations intensively:
put(key, value)
where value is a map of <column name, column value>.
I havn’t known NoSQL for long, what I know is that both Cassandra insert(which conform the api defined in Bigtable paper) and Redis “HSET” command could do that. But what’s the pros and cons of both way? Any performance and scalability difference there?
EDIT :
My requirement is something like an IM server --- I need to store session data , and I want all of them to be in memory so that low latency can be easily achieved. The session last for at most 2 hours. No consistency requirement to consider yet. And disk is only for fail-over. Lost of data is not terrible. All i need is lower latency. Operations per second --- the more, the better.
Both redis and cassandra can be used as a key value store. The difference is in speed, scale and reliability.
Redis works best as a single server, where the entire data set resides in memory.
Cassandra can handle data sets that don't fit in memory, and data sets that don't fit on a single machine. As part of distributing over multiple machines, cassandra is much more reliable. Cassandra can handle machine failures, rebuilding machines, adding capacity to the cluster when needed.
Because redis is entirely in memory, and reads/writes are served by a single machine (a single cassandra write will typically talk to multiple machines), redis will most likely be faster.
If your primary goal is speed, and you don't need to store data reliably, and your data set fits in memory, then redis would probably be a better solution.

Do NoSQL datacenter aware features enable fast reads and writes when nodes are distributed across high-latency connections?

We have a data system in which writes and reads can be made in a couple of geographic locations which have high network latency between them (crossing a few continents, but not this slow). We can live with 'last write wins' conflict resolution, especially since edits can't be meaningfully merged.
I'd ideally like to use a distributed system that allows fast, local reads and writes, and copes with the replication and write propagation over the slow connection in the background. Do the datacenter-aware features in e.g. Voldemort or Cassandra deliver this?
It's either this, or we roll our own, probably based on collecting writes using something like
rsync and sorting out the conflict resolution ourselves.
You should be able to get the behavior you're looking for using Voldemort. (I can't speak to Cassandra, but imagine that it's similarly possible using it.)
The key settings in the configuration will be:
replication-factor — This is the total number of times the data is stored. Each put or delete operation must eventually hit this many nodes. A replication factor of n means it can be possible to tolerate up to n - 1 node failures without data loss.
required-reads — The least number of reads that can succeed without throwing an exception.
required-writes — The least number of writes that can succeed without the client getting back an exception.
So for your situation, the replication would be set to whatever number made sense for your redundancy requirements, while both required-reads and required-writes would be set to 1. Reads and writes would return quickly, with a concomitant risk of stale or lost data, and the data would only be replicated to the other nodes afterwards.
I have no experience with Voldemort, so I can only comment on Cassandra.
You can deploy Cassandra to multiple datacenters with an inter-DC latency higher than a few milliseconds (see http://spyced.blogspot.com/2010/04/cassandra-fact-vs-fiction.html).
To ensure fast local reads, you can configure the cluster to replicate your data to a certain number of nodes in each datacenter (see "Network Topology Strategy"). For example, you specify that there should always be two replica in each data center. So even when you lose a node in a data center, you will still be able to read your data locally.
Write requests can be sent to any node in a Cassandra cluster. So for fast writes, your clients would always speak to a local node. The node receiving the request (the "coordinator") will replicate the data to other nodes (in other datacenters) in the background. If nodes are down, the write request will still succeed and the coordinator will replicate the data to the failed nodes at a later time ("hinted handoff").
Conflict resolution is based on a client-supplied timestamp.
If you need more than eventual consistency, Cassandra offers several consistency options (including datacenter-aware options).