Point of REQUIRE_NOTHROW in the catch c++ testing framework - catch-unit-test

What is the point of the REQUIRE_NOTHROW assertion? If I just put a statement and don't wrap it in any assertion macro it will fail if it throws anyway?

It's the difference between the TEST_CASE failing and an individual assertion failing. The REQUIRE macros ensure that the next lines aren't executed if they fail. Conversely, the CHECK macros can mark the test case as a failure but continue.
Consider this example:
REQUIRE_NOTHROW(parseInput(validInput));
REQUIRE_THROWS(parseInput(errorInput));
REQUIRE_THROWS(parseInput(NULL));
So we're explicitly requesting that passing valid input does not cause an exception, but bad input does. If we didn't use the REQUIRE_NOTHROW() macro, then the test would fail but then we'd need to decipher where it failed - an exception could have come from other lines of test code.

Related

How to report Fail instead of Error at fixture teadown?

I would like to make a fixture to do automatic assertions at the end of a test using it. However, such assertions are reported as ERROR instead of FAIL as it occurs during the teardown. Is there a solution ?

Why is LinkageError Fatal in NonFatal.scala

I was looking at scala.util.control.NonFatal. I can't find the source, but I believe it is something like this.
They are declaring LinkageError as Fatal ...
Tomcat (at least last few years I used it) always returned 500 on catch Throwable, rather than crashing on certain kinds of errors. So do many other systems that make a best effort to always return something to the client.
So, my end question is when would you use NonFatal instead of making a best-effort attempt to provide some response?
As an example, now Futures in Twitter's Future library end up not resolving on NoSuchMethodError so my Future no longer resolves as failed with a Throwable but instead throw up the stack (differently from RuntimeException). In fact, in the open source Finagle stack, a NoSuchMethodError will cause the client socket connection to close on the client with no 500 http error back to customer. Customer then thinks 'hmm, network issue maybe ... why did my socket close'
So far, it has caused me nothing but issues and I admit to be a little frustrated, but need to be open to more use cases. For years, KISS and treating every Throwable in the catchall as non fatal has worked, but NonFatal is implying there are use-cases where we should do something different.
The source code of NonFatal is linked from the API docs.
Fatal errors are those from which your system or the JVM will most likely not recover correctly, so catching those errors is not a good idea.
The sub-classes of LinkageError are: ClassCircularityError, ClassFormatError, ExceptionInInitializerError, IncompatibleClassChangeError, NoClassDefFoundError, UnsatisfiedLinkError, VerifyError. These all occur when your class path is broken, there are invalid or binary incompatible class files. It's safe to assume that your entire system is broken if these happen at runtime.
To answer the question: You should "let it crash". Always use a NonFatal pattern match when you need a catch-all clause. It will also do you the favour and handle control-flow related exceptions correctly (e.g. NonLocalReturnControl).
Note that unlike the old source you link to, StackOverflowError is not non-fatal any longer, the decision was revised in Scala 2.11 as per SI-7999.

How to "throw" a %Status to %ETN?

Many of the Caché API methods return a %Status object which indicates if this is an error. The thing is, when it's an unknown error I don't know how to handle (like a network failure) what I really want to do is "throw" the error so my code stops what it's doing and the error gets caught by some higher level error handler (and/or the built-in %ETN error log).
I could use ztrap like:
s status = someObject.someMethod()
ztrap:$$$ISERR(status)
But that doesn't report much detail (unlike, say, .NET where I can throw an exception all the way to to the top of the stack) and I'm wondering if there are any better ways to do this.
Take a look at the Class Reference for %Exception.StatusException. You can create an exception from your status and throw it to whatever error trap is active at the time (so the flow of control would be the same as your ZTRAP example), like this
set sc = someobj.MethodReturningStatus()
if $$$ISERR(sc) {
set exception = ##class(%Exception.StatusException).CreateFromStatus(sc)
throw exception
}
However, in order to recover the exception information inside the error trap code that catches this exception, the error trap must have been established with try/catch. The older error handlers, $ztrap and $etrap, do not provide you with the exception object and you will only see that you have a <NOCATCH> error as the $ZERROR value. Even in that case, the flow of control will work as you want it to, but without try/catch, you would be no better off than you are with ZTRAP
These are two different error mechanisms and can't be combined in this way. ztrap and %ETN are for Cache level errors (the angle bracket errors like <UNDEFINED>). %Status objects are for application level errors (including errors that occurred through the use of the Cache Class Library) and you can choose how you want to handle them yourself. It's not really meaningful to handle a bad %Status through the Cache error mechanism because no Cache error has occurred.
Generally what most people do is something akin to:
d:$$$ISERR(status) $$$SomeMacroRelevantToMyAppThatWillHandleThisStatus(status)
It is possible to create your own domain with your own whole host of %Status codes with attendant %msg values for your application. Your app might have tried to connect to an FTP server and had a bad password, but that doesn't throw a <DISCONNECT> and there is no reason to investigate the stack, just an application level error that needs to be handled, possibly by asking the user to enter a new password.
It might seem odd that there are these two parallel error mechanisms, but they are describing two different types of errors. Think of one of them being "platform" level errors, and the other as "application level errors"
Edit: One thing I forgot, try DecomposeStatus^%apiOBJ(status) or ##class(%Status).LogicalToOdbc(status) to convert the status object to a human readable string. Also, if you're doing command line debugging or just want to print the readable form to the principal device, you can use $system.OBJ.DisplayError(status).

error handling vs exception handling in objective c

I am not able to understand the places where an error handling or where an exception handling should be used. I assume this, if it is an existing framework class there are delegate methods which will facilitate the programmer to send an error object reference and handle the error after that. Exception handling is for cases where an operation of a programmer using some framework classes throws an error and i cannot get an fix on the error object's reference.
Is this assumption valid ? or how should i understand them ?
You should use exceptions for errors that would never appear if the programmer would have checked the parameters to the method that throws the exception. E.g. divide by 0 or the well known "out of bounds"-exception you get from NSArrays.
NSErrors are for errors that the programmer could do nothing about. E.g. parsing a plist file. It would be a waste of resources if the program would check if the file is a valid plist before it tries to read its content. For the validity check the program must parse the whole file. And parsing a file to report that it is valid so you can parse it again would be a total waste. So the method returns a NSError (or just nil, which tells you that something went wrong) if the file can't be parsed.
The parsing for validity is the "programmer should have checked the parameters" part. It's not applicable for this type of errors, so you don't throw a exception.
In theory you could replace the out of bounds exception with a return nil. But this would lead to very bad programming.
Apple says:
Important: In many environments, use of exceptions is fairly commonplace. For example, you might throw an exception to signal that a routine could not execute normally—such as when a file is missing or data could not be parsed correctly. Exceptions are resource-intensive in Objective-C. You should not use exceptions for general flow-control, or simply to signify errors. Instead you should use the return value of a method or function to indicate that an error has occurred, and provide information about the problem in an error object.
I think you are absolutely right with your assumption for Errors and for it framework provide a set of methods (UIWebView error handling ), But your assumption for Exception partially right because the exception only occurred if we do something wrong which is not allowed by the framework and can be fixed. (for example accessing a member from an array beyond its limit).
and will result in application crash.

Should a Perl constructor return an undef or a "invalid" object?

Question:
What is considered to be "Best practice" - and why - of handling errors in a constructor?.
"Best Practice" can be a quote from Schwartz, or 50% of CPAN modules use it, etc...; but I'm happy with well reasoned opinion from anyone even if it explains why the common best practice is not really the best approach.
As far as my own view of the topic (informed by software development in Perl for many years), I have seen three main approaches to error handling in a perl module (listed from best to worst in my opinion):
Construct an object, set an invalid flag (usually "is_valid" method). Often coupled with setting error message via your class's error handling.
Pros:
Allows for standard (compared to other method calls) error handling as it allows to use $obj->errors() type calls after a bad constructor just like after any other method call.
Allows for additional info to be passed (e.g. >1 error, warnings, etc...)
Allows for lightweight "redo"/"fixme" functionality, In other words, if the object that is constructed is very heavy, with many complex attributes that are 100% always OK, and the only reason it is not valid is because someone entered an incorrect date, you can simply do "$obj->setDate()" instead of the overhead of re-executing entire constructor again. This pattern is not always needed, but can be enormously useful in the right design.
Cons: None that I'm aware of.
Return "undef".
Cons: Can not achieve any of the Pros of the first solution (per-object error messages outside of global variables and lightweight "fixme" capability for heavy objects).
Die inside the constructor. Outside of some very narrow edge cases, I personally consider this an awful choice for too many reasons to list on the margins of this question.
UPDATE: Just to be clear, I consider the (otherwise very worthy and a great design) solution of having very simple constructor that can't fail at all and a heavy initializer method where all the error checking occurs to be merely a subset of either case #1 (if initializer sets error flags) or case #3 (if initializer dies) for the purposes of this question. Obviously, choosing such a design, you automatically reject option #2.
It depends on how you want your constructors to behave.
The rest of this response goes into my personal observations, but as with most things Perl, Best Practices really boils down to "Here's one way to do it, which you can take or leave depending on your needs." Your preferences as you described them are totally valid and consistent, and nobody should tell you otherwise.
I actually prefer to die if construction fails, because we set it up so that the only types of errors that can occur during object construction really are big, obvious errors that should halt execution.
On the other hand, if you prefer that doesn't happen, I think I'd prefer 2 over 1, because it's just as easy to check for an undefined object as it is to check for some flag variable. This isn't C, so we don't have a strong typing constraint telling us that our constructor MUST return an object of this type. So returning undef, and checking for that to establish success or failure, is a great choice.
The 'overhead' of construction failure is a consideration in certain edge cases (where you can't quickly fail before incurring overhead), so for those you might prefer method 1. So again, it depends on what semantics you've defined for object construction. For example, I prefer to do heavyweight initialization outside of construction. As to standardization, I think that checking whether a constructor returns a defined object is as good a standard as checking a flag variable.
EDIT: In response to your edit about initializers rejecting case #2, I don't see why an initializer can't simply return a value that indicates success or failure rather than setting a flag variable. Actually, you may want to use both, depending on how much detail you want about the error that occurred. But it would be perfectly valid for an initializer to return true on success and undef on failure.
I prefer:
Do as little initialization as possible in the constructor.
croak with an informative message when something goes wrong.
Use appropriate initialization methods to provide per object error messages etc
In addition, returning undef (instead of croaking) is fine in case the users of the class may not care why exactly the failure occurred, only if they got a valid object or not.
I despise easy to forget is_valid methods or adding extra checks to ensure methods are not called when the internal state of the object is not well defined.
I say these from a very subjective perspective without making any statements about best practices.
I would recommend against #1 simply because it leads to more error handling code which will not be written. For example, if you just return false then this works fine.
my $obj = Class->new or die "Construction failed...";
But if you return an object which is invalid...
my $obj = Class->new;
die "Construction failed #{[ $obj->error_message ]}" if $obj->is_valid;
And as the quantity of error handling code increases the probability of it being written decreases. And its not linear. By increasing the complexity of your error handling system you actually decrease the amount of errors it will catch in practical use.
You also have to be careful that your invalid object in question dies when any method is called (aside from is_valid and error_message) leading to yet more code and opportunities for mistakes.
But I agree there is value in being able to get information about the failure, which makes returning false (just return not return undef) inferior. Traditionally this is done by calling a class method or global variable as in DBI.
my $dbh = DBI->connect($data_source, $username, $password)
or die $DBI::errstr;
But it suffers from A) you still have to write error handling code and B) its only valid for the last operation.
The best thing to do, in general, is throw an exception with croak. Now in the normal case the user writes no special code, the error occurs at the point of the problem, and they get a good error message by default.
my $obj = Class->new;
Perl's traditional recommendations against throwing exceptions in library code as being impolite is outdated. Perl programmers are (finally) embracing exceptions. Rather than writing error handling code ever and over again, badly and often forgetting, exceptions DWIM. If you're not convinced just start using autodie (watch pjf's video about it) and you'll never go back.
Exceptions align Huffman encoding with actual use. The common case of expecting the constructor to just work and wanting an error if it doesn't is now the least code. The uncommon case of wanting to handle that error requires writing special code. And the special code is pretty small.
my $obj = eval { Class->new } or do { something else };
If you find yourself wrapping every call in an eval you are doing it wrong. Exceptions are called that because they are exceptional. If, as in your comment above, you want graceful error handling for the user's sake, then take advantage of the fact that errors bubble up the stack. For example, if you want to provide a nice user error page and also log the error you can do this:
eval {
run_the_main_web_code();
} or do {
log_the_error($#);
print_the_pretty_error_page;
};
You only need it in one place, at top of your call stack, rather than scattered everywhere. You can take advantage of this at smaller increments, for example...
my $users = eval { Users->search({ name => $name }) } or do {
...handle an error while finding a user...
};
There's two things going on. 1) Users->search always returns a true value, in this case an array ref. That makes the simple my $obj = eval { Class->method } or do work. That's optional. But more importantly 2) you only need to put special error handling around Users->search. All the methods called inside Users->search and all the methods they call... they just throw exceptions. And they're all caught at one point and handled the same. Handling the exception at the point which cares about it makes for much neater, compact and flexible error handling code.
You can pack more information into the exception by croaking with a string overloaded object rather than just a string.
my $obj = eval { Class->new }
or die "Construction failed: $# and there were #{[ $#->num_frobnitz ]} frobnitzes";
Exceptions:
Do the right thing without any thought by the caller
Require the least code for the most common case
Provide the most flexibility and information about the failure to the caller
Modules such as Try::Tiny fix most of the hanging issues surrounding using eval as an exception handler.
As for your use case where you might have a very expensive object and want to try and continue with it partially build... smells like YAGNI to me. Do you really need it? Or you have a bloated object design which is doing too much work too early. IF you do need it, you can put the information necessary to continue the construction in the exception object.
First the pompous general observations:
A constructor's job should be: Given valid construction parameters, return a valid object.
A constructor that does not construct a valid object cannot perform its job and is therefore a perfect candidate for exception generation.
Making sure the constructed object is valid is part of the constructor's job. Handing out a known-to-be-bad object and relying on the client to check that the object is valid is a surefire way to wind up with invalid objects that explode in remote places for non-obvious reasons.
Checking that all the correct arguments are in place before the constructor call is the client's job.
Exceptions provide a fine-grained way of propagating the particular error that occurred without needing to have a broken object in hand.
return undef; is always bad[1]
bIlujDI' yIchegh()Qo'; yIHegh()!
Now to the actual question, which I will construe to mean "what do you, darch, consider the best practice and why". First, I'll note that returning a false value on failure has a long Perl history (most of the core works that way, for example), and a lot of modules follow this convention. However, it turns out this convention produces inferior client code and newer modules are moving away from it.[2]
[The supporting argument and code samples for this turn out to be the more general case for exceptions that prompted the creation of autodie, and so I will resist the temptation to make that case here. Instead:]
Having to check for successful creation is actually more onerous than checking for an exception at an appropriate exception-handling level. The other solutions require the immediate client to do more work than it should have to just to obtain an object, work that is not required when the constructor fails by throwing an exception.[3] An exception is vastly more expressive than undef and equally expressive as passing back a broken object for purposes of documenting errors and annotating them at various levels in the call stack.
You can even get the partially-constructed object if you pass it back in the exception. I think this is a bad practice per my belief about what a constructor's contract with its clients ought to be, but the behavior is supported. Awkwardly.
So: A constructor that cannot create a valid object should throw an exception as early as possible. The exceptions a constructor can throw should be documented parts of its interface. Only the calling levels that can meaningfully act on the exception should even look for it; very often, the behavior of "if this construction fails, don't do anything" is exactly correct.
[1]: By which I mean, I am not aware of any use cases where return; is not strictly superior. If someone calls me on this I might have to actually open a question. So please don't. ;)
[2]: Per my extremely unscientific recollection of the module interfaces I've read in the last two years, subject to both selection and confirmation biases.
[3]: Note that throwing an exception does still require error-handling, as would the other proposed solutions. This does not mean wrapping every instantiation in an eval unless you actually want to do complex error-handling around every construction (and if you think you do, you're probably wrong). It means wrapping the call which is able to meaningfully act on the exception in an eval.