Is it possible to have multiple copies of an application listen to the same Kafka group/topic so that only one is reading it at a time, but the other ones will start working if the main one crashes/stops reading?
I need to make an application highly available but can't tolerate doubling the traffic to the data store on the other end of the application by having multiple copies actively running.
FYI - Technically I'm using MapR streams but it adheres to the Kafka API and functionality, in case anyone knows a MapR stream-specific feature that helps the situation.
It is possible. If multi consumers are in same consumer group, when the group subscribes a topic, kafka will do a partition assignment work for your consumers: one partition could only be consumed by only one consumer in a same group.
So you could set your topic to have only one partition, then only one consumer to consume message, others will be idle. Once the consumer is shutdown, it will trigger the group rebalance operation : kafka will do the partition assignment again. And Then in your case , a new consumer will go ahead this work. It will process message from the last committed offset which commited by old consumer.
And if your case supports parallel processing, you could make many process(app) doing same work and set the topic to multi partitions. They will be assigned to consume different partitions and process different messages. So it will speed up your process and also can tolerant the fail over. As above said, if some consumers is failed, kafka will take care it for you, it will assign their paritition to other working consumer. So everything will be ok.
Related
I'm planning to use Kafkajs https://kafka.js.org/ and implement it in a NodeJs server.
I would like to know what is the expected behavior in case I have 2 (or more) instances of the server running, each of them having a consumer which is configured with the same group id and topic?
Does this mean that they might read the same messages?
Should I specify a unique consumer group per each server instance ?
I read this - Multiple consumers consuming from same topic but not sure it applies for Kafkajs
It's not possible for a single consumer group to have multiple consumers reading from overlapping partitions in any Kafka library. If your topic only has one partition, only one instance of your application will be consuming it, and if that instance dies, the group will rebalance and the other instance will take over (potentially reading some of the same data, due to the nature of at-least-once delivery, but it's not at the same time as the other instance)
=== Assume everything from consumer point of view ===
I was reading couple of Kafka articles and I saw that the number of partitions is coupled to number of micro-service instances.... Ex: If I say 1topic 1partition for my serviceA.. Producer pushes message to topicT1, partitionP1, and from consumerSide(ServiceA1) I can read from t1,p1. If I spin new pod(ServiceA2) to have highThroughput then second instance will never receive any message because Kafka/ZooKeeper assigns id to each Consumer and partition1 is already taken by serviceA1. So serviceA2++ stays idle... To avoid such a hassle Kafka recommends to add more partition, so that number of consumers can be increased/decreased based on need.
I was also able to test through commandLine and service2 never consumed any message. If I shut service1 then service2 was able to pick new message... So if I spin more pod then FailSafe/Availability increases but throughput is same always...
Is my assumption is correct. Am I missing anything. Now I feel like any standard messaging will have the same problem...How to extend message-oriented systems itself.
Every topic has a partition, by default it comes with only one partition if you don't define the partition count value. In your case, you have a consumer group that consists of two consumers. Every consumer read the log from the partition. In your case, first consumer read the log from the first partition(we have the only partition), and for second consumer there will be no partition to the consumer the data so it become idle. Once first consumer gets down then only the second consumer starts reading the data from the first partition from the last committed offset.
Please check below blogs and videos. It explains the topic, consumer, and consumer group in kafka.
https://www.javatpoint.com/apache-kafka-consumer-and-consumer-groups
http://cloudurable.com/blog/kafka-architecture-consumers/index.html
https://docs.confluent.io/platform/current/clients/consumer.html
https://www.youtube.com/watch?v=lAdG16KaHLs
I hope this will give you idea about the consumer and consumer group.
A broad solution to this is to decouple consumption of a message (i.e. receiving a message from Kafka and perhaps deserializing it and validating that it conforms to the schema) and processing it (interpreting the message). If the consumption is simple enough, being limited to no more instances consuming than there are partitions need not constrain.
One way to accomplish this is to have a Kafka consumption service which sends an HTTP request (perhaps through a load balancer or whatever) to a processing service which has arbitrarily many members.
Note that depending on what you're using Kafka for, there may be a requirement that certain messages always be in the same partition as one another in order to ensure that they get handled in a deterministic order (since ordering across partitions is not guaranteed). A typical example of this would be if the messages are change events for a particular record. If you're accomplishing this via some hash of the message key (or a portion of the key if using a custom partitioner), then simply changing the number of partitions might not be viable (you would need to introduce some sort of migration or have the producers know which records have to be routed to the old partitions and only route to the new partitions if the record has never been seen before).
We just started replacing messaging with Kafka.
In a traditional MQ there will be a cluster and 1orMQ will be there inside.
So the MQ cluster/co-ordinator service will deliver the message to clients.
Now there can be 10 services/clients which can consume message from single MQ.
So if there are 10 messages in MQ then each service/consumer/client can read/process 1 message
Now this case is not possible in Kafka which I understood now as per design
To achieve similar functionality in Kafka I have add equal or more number of partition as client/consumer/pods.
We have a business process/workflow that is being started when initial event message is received and closed when the last message is processed. We have up to 100,000 processes executed each day. My problem is that the order of the messages that come to specific process has to be processed by the same order messages were received. If one of the messages fails, the process has to freeze until the problem is fixed, despite that all other processes has to continue. For this kind of situation i am thinking of using Kafka. first solution that came to my mind was to use Topic partitioning by message key. The key of the message would be the ProcessId. This way i could be sure that all process messages would be partitioned and kafka would guarantee the order. As i am new to Kafka what i managed to figure out that partitions has to be created in advance and that makes everything to difficult. so my questions are:
1) when i produce message to kafka's topic that does not exist, the topic is created on runtime. Is it possible to have same behavior for topic partitions?
2) there can be more than 100,000 active partitions on the topic, is that a problem?
3) can partition be deleted after all messages from that topic were read?
4) maybe you can suggest other approaches to my problem?
When i produce message to kafka's topic that does not exist, the topic is created on runtime. Is it possible to have same behavior for topic partitions?
You need to specify number of partitions while creating topic. New Partitions won't be create automatically(as is the case with topic creation), you have to change number of partitions using topic tool.
More Info: https://kafka.apache.org/documentation/#basic_ops_modify_topi
As soon as you increase number of partitions, producer and consumer will be notified of new paritions, thereby leading them to rebalance. Once rebalanced, producer and consumer will start producing and consuming from new partition.
there can be more than 100,000 active partitions on the topic, is that a problem?
Yes, having this much partitions will increase overall latency.
Go through how-choose-number-topics-partitions-kafka-cluster on how to decide number of partitions.
can partition be deleted after all messages from that topic were read?
Deleting a partition would lead to data loss and also the remaining data's keys would not be distributed correctly so new messages would not get directed to the same partitions as old existing messages with the same key. That's why Kafka does not support decreasing partition count on topic.
Also, Kafka doc states that
Kafka does not currently support reducing the number of partitions for a topic.
I suppose you choose wrong feature to solve you task.
In general, partitioning is used for load balancing.
Incoming messages will be distributed on given number of partition according to the partitioning strategy which defined at broker start. In short, default strategy just calculate i=key_hash mod number_of_partitions and put message to ith partition. More about strategies you could read here
Message ordering is guaranteed only within partition. With two messages from different partitions you have no guarantees which come first to the consumer.
Probably you would use group instead. It's option for consumer
Each group consumes all messages from topic independently.
Group could consist of one consumer or more if you need it.
You could assign many groups and add new group (in fact, add new consumer with new groupId) dynamically.
As you could stop/pause any consumer, you could manually stop all consumers related to specified group. I suppose there is no single command to do that but I'm not sure. Anyway, if you have single consumer in each group you could stop it easily.
If you want to remove the group you just shutdown and drop out related consumers. No actions on broker side is needed.
As a drawback you'll get 100,000 consumers which read (single) topic. It's heavy network load at least.
I want to implement a queue mechanism using kafka. But could not find anywhere that if it's possible to just peek data from the queue created for any topic without moving forward into it.
I want to read data from the queue and on the basis of different conditions want to remove the existing message or add another message into this queue. Also, is it possible to use a single kafka server from different machines.
I referred to tutorialspoint for learning more about it.
Thanks in advance. Any leads would be appreciated.
Keep in mind that Kakfa scales with multiple partitions per topic, and it doesn't give any ordering guarantee between partitions. So don't use kafka if you want strict ordering. Within a consumer group, if you want n consumers per topic, you need to have atleast n partitions.
Consumers don't remove messages, they commit the offset of a message. Default configuration in most clients is to auto commit offset on read. You can re-insert messages into the topic anytime. But you cannot skip a message and expect to process it later.
You can connect as many machines as you want to a kafka server. Typically, you have multiple servers as a kafka cluster, with replication for fault tolerance.
I'm managing a kafka queue using a common consumer group across multiple machines. Now I also need to show the current content of the queue. How do I read only those messages within the group which haven't been read, yet making those messages again readable by other consumers in the group which actually processes those messages. Any help would be appreciated.
In Kafka, the notion of "reading" messages from a topic and that of "consuming" them are the same thing. At a high level, the only thing that makes a "consumed" message unavailable to a consumer is that consumer setting its read offset to a value beyond that of the message in question. Thus, you can turn off the autocommit feature of your consumers and avoid committing offsets in cases where you'd like only to "read" but not to "consume".
A good proxy for getting "all messages which haven't been read" is to compare the latest committed offset to the highwater mark offset per partition. This provides a notion of "lag" that indicates how far behind a given consumer is in its consumption of a partition. The fetch_consumer_lag CLI function in pykafka is a good example of how to do this.
In Kafka, a partition can be consumed by only one consumer in a group i.e. if your topic has 10 partitions and you spawned 20 consumers with same groupId, then only 10 will be connected to Kafka and remaining 10 will be sitting idle. A new consumer will be identified by Kafka only in case one of the existing consumer dies or does not poll from the topic.
AFAIK, I don't think you can do what I understand you want to do within a consumer group. You can obviously create another groupId and process message based on the information gathered by first consumer group.
Kafka now has a KStream.peek() method
See proposal "Add KStream peek method".
It's not 100% clear to me from the docs that this prevents consuming of message that's peeked from the topic, but I can't see how you could use it in any crash-safe, robust way unless it does.
See also:
Handling consumer rebalance when implementing synchronous auto-offset commit
High-Level Consumer and peeking messages
I think that you can use publish-subscribe model. Then each consumer has own offset and could consume all messages for itself.