There are 2 variables: i and j.
i runs from 1 to fixed constant N. j runs from 1 to M(i), meaning we have an array
M=zeros(N,1);
M=[3,2,5,4];
Also S is a set of say 10 integers. Corresponding to every i, I have to find all possible ways of choosing numbers from S up to a given max limit M(i).
My code:
desired_enumerations={};
for i=1:N
for j=1:M(i)
a = combnk(S,j);
for k=1:size(a,1)
desired_enumerations{end+1,1}=a(k,:);
end
end
end
My question:
I want to pre-compute all possible subsets of S up to max(M) elements outside the double for loop and then use that data inside the for loops so i don't have to enumerate the subsets inside double for loop and avoid repeated calculations.
What is an efficient way to do this?
EDIT:
Just as a bonus if someone could also give the time-complexity of the code in big-O notation. Or i can open a new question.
Related
I'm currently working on implementing a gradient check function in which it requires to get certain index values from the result matrix. Could someone tell me how to get a group of values from the matrix?
To be specific, for a result matrx res with size M x N, I'll need to get element res(3,1), res(4,2), res(1,3), res(2,4)...
In my case, M is dimension and N is batch size and there's a label array whose size is 1xbatch_size, [3 4 1 2...]. So the desired values are res(label(:),1:batch_size). Since I'm trying to practice vectorization programming and it's better not using loop. Could someone tell me how to get a group of value without a iteration?
Cheers.
--------------------------UPDATE----------------------------------------------
The only idea I found is firstly building a 'mask matrix' then use the original result matrix to do element wise multiplication (technically called 'Hadamard product', see in wiki). After that just get non-zero element out and do the sum operation, the code in matlab should look like:
temp=Mask.*res;
desired_res=temp(temp~=0); %Note: the temp(temp~=0) extract non-zero elements in a 'column' fashion: it searches temp matrix column by column then put the non-zero number into container 'desired_res'.
In my case, what I wanna do next is simply sum(desired_res) so I don't need to consider the order of those non-zero elements in 'desired_res'.
Based on this idea above, creating mask matrix is the key aim. There are two methods to do this job.
Codes are shown below. In my case, use accumarray function to add '1' in certain location (which are stored in matrix 'subs') and add '0' to other space. This will give you a mask matrix size [rwo column]. The usage of full(sparse()) is similar. I made some comparisons on those two methods (repeat around 10 times), turns out full(sparse) is faster and their time costs magnitude is 10^-4. So small difference but in a large scale experiments, this matters. One benefit of using accumarray is that it could define the matrix size while full(sparse()) cannot. The full(sparse(subs, 1)) would create matrix with size [max(subs(:,1)), max(subs(:,2))]. Since in my case, this is sufficient for my requirement and I only know few of their usage. If you find out more, please share with us. Thanks.
The detailed description of those two functions could be found on matlab's official website. accumarray and full, sparse.
% assume we have a label vector
test_labels=ones(10000,1);
% method one, accumarray(subs,1,[row column])
tic
subs=zeros(10000,2);
subs(:,1)=test_labels;
subs(:,2)=1:10000;
k1=accumarray(subs,1,[10, 10000]);
t1=toc % to compare with method two to check which one is faster
%method two: full(sparse(),1)
tic
k2=full(sparse(test_labels,1:10000,1));
t2=toc
I have a 5-by-200 matrix where the i:50:200, i=1:50 are related to each other, so for example the matrix columns 1,51,101,151 are related to each other, and columns 49,99,149,199 are also related to each other.
I want to use a for-loop to create another matrix that re-sorts the previous matrix based on this relationship.
My code is
values=zeros(5,200);
for j=1:50
for m=1:4:200
a=factor_mat(:,j:50:200)
values(:,m)=a
end
end
However, the code does not work.
Here's what's happening. Let's say we're on the first iteration of the outer loop, so j == 1. This effectively gives you:
j = 1;
for m=1:4:200
a=factor_mat(:,j:50:200)
values(:,m)=a;
end
So you're creating the same submatrix for a (j doesn't change) 50 times and storing it at different places in the values matrix. This isn't really what you want to do.
To create each 4-column submatrix once and store them in 50 different places, you need to use j to tell you which of the 50 you're currently processing:
for j=1:50
a=factor_mat(:,j:50:200);
m=j*4; %// This gives us the **end** of the current range
values(:,m-3:m)=a;
end
I've used a little trick here, because the indices of Matlab arrays start at 1 rather than 0. I've calculated the index of the last column we want to insert. For the first group, this is column 4. Since j == 1, j * 4 == 4. Then I subtract 3 to find the first column index.
That will fix the problem you have with your loops. But loops aren't very Matlab-ish. They used to be very slow; now they're adequate. But they're still not the cool way to do things.
To do this without loops, you can use reshape and permute:
a=reshape(factor_mat,[],50,4);
b=permute(a,[1,3,2]);
values=reshape(b,[],200);
I've just started using for loops in matlab in programming class and the basic stuff is doing me fine, However I've been asked to "Use loops to create a 3 x 5 matrix in which the value of each element is its row number to the power of its column number divided by the sum of its row number and column number for example the value of element (2,3) is (2^3 / 2+3) = 1.6
So what sort of looping do I need to use to enable me to start new lines to form a matrix?
Since you need to know the row and column numbers (and only because you have to use loops), for-loops are a natural choice. This is because a for-loop will automatically keep track of your row and column number for you if you set it up right. More specifically, you want a nested for loop, i.e. one for loop within another. The outer loop might loop through the rows and the inner loop through the columns for example.
As for starting new lines in a matrix, this is extremely bad practice to do in a loop. You should rather pre-allocate your matrix. This will have a major performance impact on your code. Pre-allocation is most commonly done using the zeros function.
e.g.
num_rows = 3;
num_cols = 5;
M = zeros(num_rows,num_cols); %// Preallocation of memory so you don't grow your matrix in your loop
for row = 1:num_rows
for col = 1:num_cols
M(row,col) = (row^col)/(row+col);
end
end
But the most efficient way to do it is probably not to use loops at all but do it in one shot using ndgrid:
[R, C] = ndgrid(1:num_rows, 1:num_cols);
M = (R.^C)./(R+C);
The command bsxfun is very helpful for such problems. It will do all the looping and preallocation for you.
eg:
bsxfun(#(x,y) x.^y./(x+y), (1:3)', 1:5)
I need to convert this to Matlab code, and am struggling without the "table" function.
Table[{i,1000,ability,savingsrate,0,RandomInteger[{15,30}],1,0},{i,nrhhs}];
So basically, these values are all just numbers, and I think I need to use a function handle, or maybe a for loop. I'm no expert, so I really need some help?
I'm not an expert in Mathematics (just used it long time ago). According to this documentation for Table function, you are using this form:
Table[expr, {i, imax}]
generates a list of the values of expr when i runs from 1 to imax.
It looks like your statement will produce list duplicating the list in first argument increasing i from 1 to nrhhs and using different random number.
In MATLAB the output can be equivalent to a matrix or a cell array.
To create a matrix with rows as your lists you can do:
result = [ (1:nrhhs)', repmat([1000,ability,savingsrate,0],nrhhs,1), ...
randi([15 30],nrhhs,1), repmat([1,0],nrhhs,1) ];
You can convert the above matrix to a cell array:
resultcell = cell2mat(result, ones(nrhhs,1));
The "Table" example you gave creates a list of nrhhs sub-lists, each of which contains 8 numbers (i, 1000, ability, savingsrate, 0, a random integer between 15 and 30 inclusive, 1, and 0). This is essentially (though not exactly) the same as an nrhhs x 8 matrix.
Assuming you do just want a matrix out, though, an analogous for loop in Matlab would be:
result = zeros(nrhhs,8); % preallocate memory for the result
for i = 1:nrhhs
result(i,:) = [i 1000 ability savingsrate 0 randi([15 30]) 1 0];
end
This method is likely slower than yuk's answer (which makes much more efficient use of vectors to avoid the for loop), but might be a little easier to pick apart depending on how familiar you are with Matlab.
I want to sum up several vectors of different size in an array. Each time one of the vectors drops out of my program, I want to append it to my array. Like this:
array = [array, vector];
In the end I want to let this array be the output of a function. But it gives me wrong results. Is this possible with MATLAB?
Thanks and kind regards,
Damian
Okay, given that we're dealing with column vectors of different size, you can't put them all in a numerical array, since a numerical array has to be rectangular. If you really wanted to put them in the numerical array, then the column length of the array will need to be the length of the longest vector, and you'll have to pad out the shorter vectors with NaNs.
Given this, a better solution would be, as chaohuang hinted at in the comments, to use a cell array, and store one vector in each cell. The problem is that you don't know beforehand how many vectors there will be. The usual approach that I'm aware of for this problem is as follows (but if someone has a better idea, I'm keen to learn!):
UpperBound = SomeLargeNumber;
Array = cell(1, UpperBound);
Counter = 0;
while SomeCondition
Counter = Counter + 1;
if Counter > UpperBound
error('You did not choose a large enough upper bound!');
end
%#Create your vector here
Array{1, Counter} = YourVectorHere;
end
Array = Array(1, 1:Counter);
In other words, choose some upper bound beforehand that you are sure you won't go above in the loop, and then cut your cell array down to size once the loop is finished. Also, I've put in an error trap in case you're choice of upper bound turns out to be too small!
Oh, by the way, I just noted in your question the words "sum up several vectors". Was this a figure of speech or did you actually want to perform a sum operation somewhere?