I've just started using for loops in matlab in programming class and the basic stuff is doing me fine, However I've been asked to "Use loops to create a 3 x 5 matrix in which the value of each element is its row number to the power of its column number divided by the sum of its row number and column number for example the value of element (2,3) is (2^3 / 2+3) = 1.6
So what sort of looping do I need to use to enable me to start new lines to form a matrix?
Since you need to know the row and column numbers (and only because you have to use loops), for-loops are a natural choice. This is because a for-loop will automatically keep track of your row and column number for you if you set it up right. More specifically, you want a nested for loop, i.e. one for loop within another. The outer loop might loop through the rows and the inner loop through the columns for example.
As for starting new lines in a matrix, this is extremely bad practice to do in a loop. You should rather pre-allocate your matrix. This will have a major performance impact on your code. Pre-allocation is most commonly done using the zeros function.
e.g.
num_rows = 3;
num_cols = 5;
M = zeros(num_rows,num_cols); %// Preallocation of memory so you don't grow your matrix in your loop
for row = 1:num_rows
for col = 1:num_cols
M(row,col) = (row^col)/(row+col);
end
end
But the most efficient way to do it is probably not to use loops at all but do it in one shot using ndgrid:
[R, C] = ndgrid(1:num_rows, 1:num_cols);
M = (R.^C)./(R+C);
The command bsxfun is very helpful for such problems. It will do all the looping and preallocation for you.
eg:
bsxfun(#(x,y) x.^y./(x+y), (1:3)', 1:5)
Related
I need to find index of maximum element in each row in matrix in MATLAB.
Something like
[~,indexes] = maxValues = max(p_y_x,[],2);
works fine, but I need to get LAST index (when there is more than one with maximum value).
Now I have something like this:
N=size(p_y_x,1);
maxValues = max(p_y_x,[],2);
indexes=zeros(1,N);
for n=1:N
indexes(n)=find(p_y_x(n,:)==maxValues(n),1,'last');
end
Which is complicated and not very efficient (because of the for loop).
I doubt something that trivial must be done that way. Is there a more optimal solution?
The same code for finding the first occurrence works for the last if you flip the array horizontally and then correct the indices:
[~, indexes] = max(fliplr(p_y_x),[],2);
indexes = size(p_y_x,2)-indexes+1;
Let bsxfun and accumarray help you out -
[r,c] = find(bsxfun(#eq,p_y_x,max(p_y_x,[],2)))
indexes = accumarray(r,c,[],#max)
If you are a fan of one-liners, for fun you could also do -
[~,indexes] = max(cumsum(bsxfun(#eq,p_y_x,max(p_y_x,[],2)),2),[],2)
You can use linear indexing to get the last index of the maximum by finding all maximum values within a row, then using the index of the last to index the original column:
N=size(p_y_x,1);
for n=1:N
[~, indices(n)] = max(fliplr(p_y_x(n,:))); %// find maxima in a row
end
indices= size(p_y_x,2)-indices+1;
Since the new execution engine was introduced in MATLAB R2015b for loops are no longer very slow, and this is the intuitive way of doing this. Omitting the time consuming find will probably be the largest efficiency improvement you can make.
Note that I renamed indexes to indices, as that is the Latin plural.
I have a 5-by-200 matrix where the i:50:200, i=1:50 are related to each other, so for example the matrix columns 1,51,101,151 are related to each other, and columns 49,99,149,199 are also related to each other.
I want to use a for-loop to create another matrix that re-sorts the previous matrix based on this relationship.
My code is
values=zeros(5,200);
for j=1:50
for m=1:4:200
a=factor_mat(:,j:50:200)
values(:,m)=a
end
end
However, the code does not work.
Here's what's happening. Let's say we're on the first iteration of the outer loop, so j == 1. This effectively gives you:
j = 1;
for m=1:4:200
a=factor_mat(:,j:50:200)
values(:,m)=a;
end
So you're creating the same submatrix for a (j doesn't change) 50 times and storing it at different places in the values matrix. This isn't really what you want to do.
To create each 4-column submatrix once and store them in 50 different places, you need to use j to tell you which of the 50 you're currently processing:
for j=1:50
a=factor_mat(:,j:50:200);
m=j*4; %// This gives us the **end** of the current range
values(:,m-3:m)=a;
end
I've used a little trick here, because the indices of Matlab arrays start at 1 rather than 0. I've calculated the index of the last column we want to insert. For the first group, this is column 4. Since j == 1, j * 4 == 4. Then I subtract 3 to find the first column index.
That will fix the problem you have with your loops. But loops aren't very Matlab-ish. They used to be very slow; now they're adequate. But they're still not the cool way to do things.
To do this without loops, you can use reshape and permute:
a=reshape(factor_mat,[],50,4);
b=permute(a,[1,3,2]);
values=reshape(b,[],200);
I have a matrix with a large number of rows. I have another matrix that I will loop through one row at a time. For each row in the second matrix, I need to look for similar rows in the first matrix. Once all the similar rows are found, I need to know the row numbers of the similar rows. These rows will almost never be exact, so ismember does not work.
Also, the solution would preferably (not necessarily, however) give some way to set a level of similarity that would trigger the code to say it is similar and give me the row number.
Is there any way to do this? I've looked around, and I can't find anything.
You could use cosine distance, which finds the angle between two vectors. Similar vectors (in your case, a row and your comparison vector) have a value close to 1 and dissimilar vectors have a value close to 0.
function d = cosSimilarity(u, v)
d = dot(u,v)/(norm(u)*norm(v));
end
To apply this function to each to all pairs of rows in the matrices M and V you could use nested for loops. Hardly the most elegant, but it will work:
numRowsM = size(M, 1)
numRowsV = size(V, 1)
similarThresh = .9
for m = 1:numRowsM
for v = 1:numRowsV
similarity = cosSimilarity(V(v,:), M(m, :))
% Notify about similar rows
if similarity > similarThresh
disp([num2str(m) ' is similar to a row in V'])
end
end
end
Instead of nested for loops, there are definitely other ways. You could start by looking at the solution from this question, which will help you avoid the loop by converting the rows of the matrix into cells of a cell array and then applying the function with cellfun.
I'm struggling with one of my matlab assignments. I want to create 10 different models. Each of them is based on the same original array of dimensions 1x100 m_est. Then with for loop I am choosing 5 random values from the original model and want to add the same random value to each of them. The cycle repeats 10 times chosing different values each time and adding different random number. Here is a part of my code:
steps=10;
for s=1:steps
for i=1:1:5
rl(s,i)=m_est(randi(numel(m_est)));
rl_nr(s,i)=find(rl(s,i)==m_est);
a=-1;
b=1;
r(s)=(b-a)*rand(1,1)+a;
end
pert_layers(s,:)=rl(s,:)+r(s);
M=repmat(m_est',s,1);
end
for k=steps
for m=1:1:5
M_pert=M;
M_pert(1:k,rl_nr(k,1:m))=pert_layers(1:k,1:m);
end
end
In matrix M I am storing 10 initial models and want to replace the random numbers with indices from rl_nr matrix into those stored in pert_layers matrix. However, the last loop responsible for assigning values from pert_layers to rl_nr indices does not work properly.
Does anyone know how to solve this?
Best regards
Your code uses a lot of loops and in this particular circumstance, it's quite inefficient. It's better if you actually vectorize your code. As such, let me go through your problem description one point at a time and let's code up each part (if applicable):
I want to create 10 different models. Each of them is based on the same original array of dimensions 1x100 m_est.
I'm interpreting this as you having an array m_est of 100 elements, and with this array, you wish to create 10 different "models", where each model is 5 elements sampled from m_est. rl will store these values from m_est while rl_nr will store the indices / locations of where these values originated from. Also, for each model, you wish to add a random value to every element that is part of this model.
Then with for loop I am choosing 5 random values from the original model and want to add the same random value to each of them.
Instead of doing this with a for loop, generate all of your random indices in one go. Since you have 10 steps, and we wish to sample 5 points per step, you have 10*5 = 50 points in total. As such, why don't you use randperm instead? randperm is exactly what you're looking for, and we can use this to generate unique random indices so that we can ultimately use this to sample from m_est. randperm generates a vector from 1 to N but returns a random permutation of these elements. This way, you only get numbers enumerated from 1 to N exactly once and we will ensure no repeats. As such, simply use randperm to generate 50 elements, then reshape this array into a matrix of size 10 x 5, where the number of rows tells you the number of steps you want, while the number of columns is the total number of points per model. Therefore, do something like this:
num_steps = 10;
num_points_model = 5;
ind = randperm(numel(m_est));
ind = ind(1:num_steps*num_points_model);
rl_nr = reshape(ind, num_steps, num_points_model);
rl = m_est(rl_nr);
The first two lines are pretty straight forward. We are just declaring the total number of steps you want to take, as well as the total number of points per model. Next, what we will do is generate a random permutation of length 100, where elements are enumerated from 1 to 100, but they are in random order. You'll notice that this random vector uses only a value within the range of 1 to 100 exactly once. Because you only want to get 50 points in total, simply subset this vector so that we only get the first 50 random indices generated from randperm. These random indices get stored in ind.
Next, we simply reshape ind into a 10 x 5 matrix to get rl_nr. rl_nr will contain those indices that will be used to select those entries from m_est which is of size 10 x 5. Finally, rl will be a matrix of the same size as rl_nr, but it will contain the actual random values sampled from m_est. These random values correspond to those indices generated from rl_nr.
Now, the final step would be to add the same random number to each model. You can certainly use repmat to replicate a random column vector of 10 elements long, and duplicate them 5 times so that we have 5 columns then add this matrix together with rl.... so something like:
a = -1;
b = 1;
r = (b-a)*rand(num_steps, 1) + a;
r = repmat(r, 1, num_points_model);
M_pert = rl + r;
Now M_pert is the final result you want, where we take each model that is stored in rl and add the same random value to each corresponding model in the matrix. However, if I can suggest something more efficient, I would suggest you use bsxfun instead, which does this replication under the hood. Essentially, the above code would be replaced with:
a = -1;
b = 1;
r = (b-a)*rand(num_steps, 1) + a;
M_pert = bsxfun(#plus, rl, r);
Much easier to read, and less code. M_pert will contain your models in each row, with the same random value added to each particular model.
The cycle repeats 10 times chosing different values each time and adding different random number.
Already done in the above steps.
I hope you didn't find it an imposition to completely rewrite your code so that it's more vectorized, but I think this was a great opportunity to show you some of the more advanced functions that MATLAB has to offer, as well as more efficient ways to generate your random values, rather than looping and generating the values one at a time.
Hopefully this will get you started. Good luck!
I've got an n-by-k sized matrix, containing k numbers per row. I want to use these k numbers as indexes into a k-dimensional matrix. Is there any compact way of doing so in MATLAB or must I use a for loop?
This is what I want to do (in MATLAB pseudo code), but in a more MATLAB-ish way:
for row=1:1:n
finalTable(row) = kDimensionalMatrix(indexmatrix(row, 1),...
indexmatrix(row, 2),...,indexmatrix(row, k))
end
If you want to avoid having to use a for loop, this is probably the cleanest way to do it:
indexCell = num2cell(indexmatrix, 1);
linearIndexMatrix = sub2ind(size(kDimensionalMatrix), indexCell{:});
finalTable = kDimensionalMatrix(linearIndexMatrix);
The first line puts each column of indexmatrix into separate cells of a cell array using num2cell. This allows us to pass all k columns as a comma-separated list into sub2ind, a function that converts subscripted indices (row, column, etc.) into linear indices (each matrix element is numbered from 1 to N, N being the total number of elements in the matrix). The last line uses these linear indices to replace your for loop. A good discussion about matrix indexing (subscript, linear, and logical) can be found here.
Some more food for thought...
The tendency to shy away from for loops in favor of vectorized solutions is something many MATLAB users (myself included) have become accustomed to. However, newer versions of MATLAB handle looping much more efficiently. As discussed in this answer to another SO question, using for loops can sometimes result in faster-running code than you would get with a vectorized solution.
I'm certainly NOT saying you shouldn't try to vectorize your code anymore, only that every problem is unique. Vectorizing will often be more efficient, but not always. For your problem, the execution speed of for loops versus vectorized code will probably depend on how big the values n and k are.
To treat the elements of the vector indexmatrix(row, :) as separate subscripts, you need the elements as a cell array. So, you could do something like this
subsCell = num2cell( indexmatrix( row, : ) );
finalTable( row ) = kDimensionalMatrix( subsCell{:} );
To expand subsCell as a comma-separated-list, unfortunately you do need the two separate lines. However, this code is independent of k.
Convert your sub-indices into linear indices in a hacky way
ksz = size(kDimensionalMatrix);
cksz = cumprod([ 1 ksz(1:end-1)] );
lidx = ( indexmatrix - 1 ) * cksz' + 1; #'
% lindx is now (n)x1 linear indices into kDimensionalMatrix, one index per row of indexmatrix
% access all n values:
selectedValues = kDimensionalMatrix( lindx );
Cheers!