How can byte order (big or little endianness) be checked from within Qbs? I do not know any other way to do it in Qbs or pure JavaScript. The idea is to avoid any other dependency from within Qbs, e.g. node.js' os.endianness().
There is the cpp.endianness property.
Related
Roald has written an excellent guide for the Twincat Eventlogger.
https://roald87.github.io/twincat/2020/11/03/twincat-eventlogger-plc-part.html
https://roald87.github.io/twincat/2021/01/20/twincat-eventlogger-hmi-part.html
For us this is exactly what we want, there is however 1 thing I haven't figured out. How to get the sourcename of the alarm in multiple languages in the HMI. params::sourceName gives the path in the software (example: MAIN.fbConveyor1.Cylinder1) This path can be customized when initializing the alarm (as Roald has shown). This doesn't work in my case, since I would like to define a generic alarm (example: "Cilinder not retracted within maximum time") that is instantiated multiple times.
I was thinking of using the source as a way to show the operator where the alarm occurs. We use this way (path) already for saving machine settings among other things. The machines we build are installed all over the world, so multilanguage is a must.
Beckhoff does support multilanguage alarm names (when defined), but the source is not defined, but dynamically generated.
Anyone have an idea how this problem can be solved?
If I understand your question correctly, then being able to parameterize the event text with information of the source of the problem should help you out.
If you define the event text as Cylinder {0} has not retracted in time. then you can add the arguments of that text during runtime.
IF bRaiseAlarm THEN
bRaiseAlarm := FALSE;
fbAlarm.ipArguments.Clear().AddString('Alice');
fbAlarm.Raise(0);
END_IF
However, since this also stated in the articles you mentioned, I am unsure if this would solve your problem.
'Alice' in this example, can be hard to localize. The following options come to my mind.
The string can be based on an ENUM. Enums can have textlist support, so if you add your translations there, that should allow multilingual output. However... this does require a lot of setup, placing translations inside your code, and making sure the PLC application is aware of the language that the parameter should use.
Use tags to mark the source device, as tags can be language invariant. It is not the most user-friendly method, but it could work for you. It would become something like: "Cylinder 'AA.1123' did not retract in time.". 'AA.1123' as a tag would have to be stored inside your PLC code as a string. You will have to trust that your operator can relate the tag back to the actual source.
Hopefully, this helped, or else please help me understand the problem better.
I recently encountered a very large mission-critical project where all the configuration
files were defined using textual protobuf definitions. The configuration files are meant to be
human readable and editable.
For example
message ServerSettings {
required int32 port = 3022;
optional string name = "mywebserver";
}
Personally I found this humorous.
But is it in fact a reasonable keep-it-simple technique, or clearly moronic ?!
In other words, are there REAL, ACTUAL problems with this ?
If that is the text proto if format, then... Whatever, I guess. If it works, then it is as reasonable as any other serialization format.
If that is meant to be proto schema, then it is illegal (the value after the = is meant to be the field number).
Json or XML might be more typical, but as long as it works it isn't "moronic". So the ultimate question is: does it work?
I think it's quite clever. I am guessing they pass it through protoc --encode to generate a binary which is what is actually parsed.
Pros:
1. Code is generated to parse configuration
2. Type validation
3. More robust configuration file compared to a key/value as it supports structs, unions, maps and arrays
4. The configuration data is now serializable meaning it can be easily exposed to an RPC or IPC interface.
Cons:
1. The syntax can be a little verbose for maps/arrays.
2. It requires protoc to be installed on the target as well as libprotobuf.so if you are on a system with tight memory limits.
I have an OpenCL kernel that runs well but I want to look at the intermediate code. I use getprograminfo to pull out the binary and save it to a text file. I've tried this with nVidia, AMD, an i7 and a Xeon.
In all of these cases the binary is unreadable.
I understand that on OS X the chunk of data returned is actually a binary plist. I've found instructions for using plutil to convert it to xml, and they work.
It's still unreadable ... though I've seen instructions online that this is where you find the PTX code (in the case of my AMD 5870). There's the expected clBinaryData key but the data under that key is still one big chunk of stuff, not readable IL instructions in text form.
I'd really like to examine the intermediate language to assess inefficiencies in my use of the gpu. Is this simply not possible under Xcode? Or, what am I doing wrong?
Thanks for any information!...
If you run your program with following environmental variable set you should see .IL and .ISA files in your directory.
$ GPU_DUMP_DEVICE_KERNEL=3 ./my-program
Another way is to use AMD APP Kernel Analyzer (which comes along with AMD APP SDK) to look at the Intermediate file i.e IL and ISA.
(I am not sure whether AMD APP SDK available for MAC or not).
One more option according to APP SDK documentation, put the below in your host code.
putenv("GPU_DUMP_DEVICE_KERNEL=3");
References
AMD OpenCL Programming Guide
AMD Devgurus forum
(Making this a top-level answer so I can do some formatting.)
ocluser's answer was very helpful, in that it was enlightening and caused great learning, though it did not, alas, solve the problem.
I've verified that the environment variable described is being set, and is available to my application when run from within xcode. However, it does not have (under OSX) the highly desirable effect it has under Linux.
But, I now know how to set environment variables in 7 of 8 different ways. I also set "tracer" envars to tell me which methods are effective within the scope of my application. From the below, you can see that both the method of "edit scheme" to add arguments works, as does the "putenv" suggested by ocluser. What didn't set it in that scope: ~/.MACOS/environment.plist, app-specific plist, .profile, and adding a build phase to run a custom script (I found at least one other way within xcode to set one but forgot what I called the tracer and can't find it now; maybe it's on another machine....)
GPU_DUMP_DEVICE_KERNEL is 3
GPU_DUMP_TRK_ENVPLIST is (null)
GPU_DUMP_TRK_APPPLIST is (null)
GPU_DUMP_TRK_DOTPROFILE is (null)
GPU_DUMP_TRK_RUNSCRIPT is (null)
GPU_DUMP_TRK_SCHARGS is 1
GPU_DUMP_TRK_PUTENV is 1
... so, no this doesn't really answer the question, but expands on it a bit. Sorry if poor form. Thanks!
Have not given up and shall provide an actual problem-solver if I find one.
I am trying to call a function through javascript via my NPRuntime plugin
but when i pass an integer value to a function,chrome detects that as NPVariantType_Double while firefox is taking same as NPVariantType_Int32.
Can we do avoid this without modifying script to make sure that both firefox and chrome detects it as NPVariantType_Int32.
Short answer: no, not really. They will give it to you in the format that they decide to give it to you. I recommend you cast it to a int32.
If you're really worried about how it's going to come in and need the format to remain exactly the same, pass it as a string and use some form of lexical cast to convert it to the numeric format you need.
Remember that javascript is dynamically typed, so from their perspective it shouldn't matter. This is just one of those annoying things :-/ FireBreath "solves" this issue simply by not caring what the browser provides and converting it to the datatype the function says it expects.
Taxilian is right. Chrome and Opera(as far as I recall) are returning mainly NPVariantType_Double , even if this represents the location of an element (in pixels).You can create a function that converts NPVariantType_Double and NPVariantType_Int32 to whatever you want.
os i figured out how to use the -mthumb and -mno-thumb compiler flag and more or less understand what it's doing.
But what is the -mthumb-interlinking flag doing? when is it needed, and is it set for the whole project if i set 'compile for thumb' in my project settings?
thanks for the info!
Open a terminal and type man gcc
Do you mean -mthumb-interwork ?
-mthumb-interwork
Generate code which supports calling between the ARM and Thumb
instruction sets. Without this option the two instruction sets
cannot be reliably used inside one program. The default is
-mno-thumb-interwork, since slightly larger code is generated when
-mthumb-interwork is specified.
If this is related to a build configuration, you should be able to set it separately for each configuration "such as Release or Debug".
Why do you want to change these settings? I know using thumb instructions save some memory but will it save enough to matter in this case?
my application uses both, thumb and vfp code but i never specifically
set -thumb-interwork flag.. how is that possible?
According to man page, without that flag the two instructions sets
cannot be reliably used inside one program.
It says "reliably"; so without that option, it seems they still can be mixed within a single program but it might be "unreliably". I think normally mixing both instructions sets works, the compiler is smart enough to figure out when it has to switch from one set to another one. However, there might be border cases the compiler just doesn't understand correctly and it might fail to see that it should switch instruction sets here, causing the application to fail (most likely it will crash). This option generates special code, so that no matter what your code does, the switching always happens correctly and reliably; the downside is that this extra code is needed for every global visible function and thus increases the binary side (I have no idea if it also might slow down function calls a little bit, I personally would expect that).
Please also note the following two settings:
-mcallee-super-interworking
Gives all externally visible functions in the file being
compiled an ARM instruction set header
which switches to Thumb mode before executing the rest of
the function. This allows these
functions to be called from non-interworking code.
-mcaller-super-interworking
Allows calls via function pointers (including virtual
functions) to execute correctly regardless
of whether the target code has been compiled for
interworking or not. There is a small overhead
in the cost of executing a function pointer if this option
is enabled.
Though I think you only need those, when building libraries to be used with other projects; but I don't know for sure. The GCC thumb handling is definitely "underdocumented".