iPhone -mthumb-interlinking - iphone

os i figured out how to use the -mthumb and -mno-thumb compiler flag and more or less understand what it's doing.
But what is the -mthumb-interlinking flag doing? when is it needed, and is it set for the whole project if i set 'compile for thumb' in my project settings?
thanks for the info!

Open a terminal and type man gcc
Do you mean -mthumb-interwork ?
-mthumb-interwork
Generate code which supports calling between the ARM and Thumb
instruction sets. Without this option the two instruction sets
cannot be reliably used inside one program. The default is
-mno-thumb-interwork, since slightly larger code is generated when
-mthumb-interwork is specified.
If this is related to a build configuration, you should be able to set it separately for each configuration "such as Release or Debug".
Why do you want to change these settings? I know using thumb instructions save some memory but will it save enough to matter in this case?

my application uses both, thumb and vfp code but i never specifically
set -thumb-interwork flag.. how is that possible?
According to man page, without that flag the two instructions sets
cannot be reliably used inside one program.
It says "reliably"; so without that option, it seems they still can be mixed within a single program but it might be "unreliably". I think normally mixing both instructions sets works, the compiler is smart enough to figure out when it has to switch from one set to another one. However, there might be border cases the compiler just doesn't understand correctly and it might fail to see that it should switch instruction sets here, causing the application to fail (most likely it will crash). This option generates special code, so that no matter what your code does, the switching always happens correctly and reliably; the downside is that this extra code is needed for every global visible function and thus increases the binary side (I have no idea if it also might slow down function calls a little bit, I personally would expect that).
Please also note the following two settings:
-mcallee-super-interworking
Gives all externally visible functions in the file being
compiled an ARM instruction set header
which switches to Thumb mode before executing the rest of
the function. This allows these
functions to be called from non-interworking code.
-mcaller-super-interworking
Allows calls via function pointers (including virtual
functions) to execute correctly regardless
of whether the target code has been compiled for
interworking or not. There is a small overhead
in the cost of executing a function pointer if this option
is enabled.
Though I think you only need those, when building libraries to be used with other projects; but I don't know for sure. The GCC thumb handling is definitely "underdocumented".

Related

MATLAB compiler says some functions in my app are using not licensed for compilation functions

I want to compile my app using matlab-compiler it does so, but with issues...
It says there are some functions that are not licensed for compilation.
The problem is that I haven't used those functions (one of them is fimath.m) in my app.
I think these functions are used inside some of my functions which I don't know.
My question is how to find out which one of my functions are using those functions in order to remove them or replace them with other functions.
There are more than 50 functions in my app and it's not possible to check them one by one.
For every returned "unlicensed" function you can execute the following command,
dbstop in <function name> % without the <>
and afterwards run your code normally for several typical inputs/cases. If it stops at one of these breakpoints, look at the call stack (using either dbstack or the Editor tab of the MATLAB GUI), and identify the entry point from your own code.
If none of the breakpoints is ever hit, it could mean that these functions are referred-to inside the code, but some logic is preventing their execution (turning them, practically, to "unreachable code"). In this case, you will likely need to remove these references manually. To know where from, using information from the link posted by VTodorov you can list the dependencies of each file using
[fList,pList] = matlab.codetools.requiredFilesAndProducts('myFun.m');
which can be called on the output of dir (after some minor conversion). It could be useful to use the toponly flag.

More than one V4L-DVB driver on the same host machine

I have a question related to V4L-DVB drivers. Following the
Building/Compiling the Latest V4L-DVB Source Code link, there are 3 ways to
compile. I am curious about the last approach (More "Manually
Intensive" Approach). It allows me to choose the components that I
wish to build and install using the "make menuconfig". Some of these components (i.e. "CONFIG_MEDIA_ATTACH") are used in pre-processor directives that define a function in one shape if defined, and a function in another if not defined (i.e.
dvb_attach, dvb_detach) in the resulting modules (i.e. dvb_core.ko)
that will be loaded by most of the DVB drivers. What happens if there are two
drivers (*.ko modules) on the same host machine, one that needs dvb_core.ko with
CONFIG_MEDIA_ATTACH defined and another that needs dvb_core.ko with
CONFIG_MEDIA_ATTACH undefined, is there a clean way to handle this?
What is also not clear to me is: Since the V4L compilation environment seems very customizable (by setting the .config file), if I develop a driver using V4L-DVB structures, there is a big chance that it has conflicts with other drivers since each driver has its own custom settings. Is my understanding correct?
Thanks!
Dave

Possibility of an LLVM LTO Pass plugin?

I was wondering if it's currently possible to have an 'external' (.so/.dylib) LLVM plugin (module) pass scheduled at LTO time? The reason for wanting this is a inter-modular optimization I want to add.
I also found this topic; How to write a custom intermodular pass in LLVM?
But a separate tool is not an option for me.
Thanks
I think the most helpful thing here might be to understand how passes are run and what the state of the code is during LTO.
First of all, when optimization passes are run by the compiler, they are done as a set that has been added to a PassManager. This means that LLVM/Clang, when passed something like -O3 will create a copy of a PassManager and subsequently provide it the set of passes expected to provide O3 level of optimization. This is very different from what you are doing with an external library which must be provided manually and cannot be fit into the pass pipeline normally.
Then we have the state of things when doing LTO. During Link Time Optimization, all of the individual translation units have been consolidated and are now a single Module. This means that an optimization which runs on each function will run on every function in the code base. Similarly, a per-module optimization will run on the full Module and therefor offer Inter-Procedural Analysis/Optimization.
If you're looking to use an Intra-Modular Pass then there is no reason to do this at LTO time and instead you can simply make a ModulePass and run that on each unit.

Xcode (10.7) -- clGetProgramBinaries results unreadable

I have an OpenCL kernel that runs well but I want to look at the intermediate code. I use getprograminfo to pull out the binary and save it to a text file. I've tried this with nVidia, AMD, an i7 and a Xeon.
In all of these cases the binary is unreadable.
I understand that on OS X the chunk of data returned is actually a binary plist. I've found instructions for using plutil to convert it to xml, and they work.
It's still unreadable ... though I've seen instructions online that this is where you find the PTX code (in the case of my AMD 5870). There's the expected clBinaryData key but the data under that key is still one big chunk of stuff, not readable IL instructions in text form.
I'd really like to examine the intermediate language to assess inefficiencies in my use of the gpu. Is this simply not possible under Xcode? Or, what am I doing wrong?
Thanks for any information!...
If you run your program with following environmental variable set you should see .IL and .ISA files in your directory.
$ GPU_DUMP_DEVICE_KERNEL=3 ./my-program
Another way is to use AMD APP Kernel Analyzer (which comes along with AMD APP SDK) to look at the Intermediate file i.e IL and ISA.
(I am not sure whether AMD APP SDK available for MAC or not).
One more option according to APP SDK documentation, put the below in your host code.
putenv("GPU_DUMP_DEVICE_KERNEL=3");
References
AMD OpenCL Programming Guide
AMD Devgurus forum
(Making this a top-level answer so I can do some formatting.)
ocluser's answer was very helpful, in that it was enlightening and caused great learning, though it did not, alas, solve the problem.
I've verified that the environment variable described is being set, and is available to my application when run from within xcode. However, it does not have (under OSX) the highly desirable effect it has under Linux.
But, I now know how to set environment variables in 7 of 8 different ways. I also set "tracer" envars to tell me which methods are effective within the scope of my application. From the below, you can see that both the method of "edit scheme" to add arguments works, as does the "putenv" suggested by ocluser. What didn't set it in that scope: ~/.MACOS/environment.plist, app-specific plist, .profile, and adding a build phase to run a custom script (I found at least one other way within xcode to set one but forgot what I called the tracer and can't find it now; maybe it's on another machine....)
GPU_DUMP_DEVICE_KERNEL is 3
GPU_DUMP_TRK_ENVPLIST is (null)
GPU_DUMP_TRK_APPPLIST is (null)
GPU_DUMP_TRK_DOTPROFILE is (null)
GPU_DUMP_TRK_RUNSCRIPT is (null)
GPU_DUMP_TRK_SCHARGS is 1
GPU_DUMP_TRK_PUTENV is 1
... so, no this doesn't really answer the question, but expands on it a bit. Sorry if poor form. Thanks!
Have not given up and shall provide an actual problem-solver if I find one.

MS VS-2005 Compiler optimization not removing unused/unexecuted code

I have a workspace built using MS-Visual Studio 2005 with all C code.In that i see many functions which are not called but they are still compiled(they are not under any compile time macro to disable them from compiling).
I set following optimization settings for the MS-VS2005 project to remove that unused code:-
Optimization level - /Ox
Enable whole program optimization - /GL
I tried both Favor speed /Ot and Favor Size /Os
Inspite of all these options, when i see the linker generated map file, I see the symbols(unsed functions) names present in the map file.
Am I missing something? I want to completely remove the unused code.
How do I do this?
The compiler compiles C files one-at-a-time. Therefore, while compiling a C-file that does contains an unused function, the compiler cannot be sure that it will not be called from another file and hence it will compile that function too. However, if that function were declared as static (file-scope), then the compiler would know it is not used and hence remove it.
Even with whole program optimization, I think it would still not be done since the compilation could be for a library.
Linkers do something similar to what you are looking for. If your code links against a library containing multiple objects, then any objects that do not contain functions used by your code (directly or indirectly) would not be included in the final executable.
One option would be to separate your code into individual libraries and object files.
PS - This is just my guess. The behavior of the compiler (with whole program optimization) or linker essentially depends on the design choices of that particular compiler or linker
On our projects we have a flag set under the project properties\Linker\Refrences. We set it to Eliminate Unreferenced Data (/OPT:REF), according to the description this is supposed to remove function calls or data that are never used. I am just going by the description, I have never tested this or worked with it. But I just happened to see it within the last hour and figured it might be something you could try.