Calculating the mean of elements in a list in Scala - scala

I'm trying to write a method that calculates the mean of the elements in a given List in Scala. Here's my code:
def meanElements(list: List[Float]): Float = {
list match {
case x :: tail => (x + meanElements(tail))/(list.length)
case Nil => 0
}
}
When I call meanElements(List(10,12,14))), the result I get is different than 12. Can someone help?

You can simply do it using inbuilt functions:
scala> def mean(list:List[Int]):Int =
| if(list.isEmpty) 0 else list.sum/list.size
mean: (list: List[Int])Int
scala> mean(List(10,12,14))
res1: Int = 12
scala>

The formula is not correct, it should be:
case x :: tail => (x + meanElements(tail) * tail.length) / list.length
But this implementation is performing a lot of divisions and multiplications.
It would be better to split the computation of the mean to two steps,
calculating the sum first,
and then dividing by list.length.
That is, something more like this:
def meanElements(list: List[Float]): Float = sum(list) / list.length
Where sum is a helper function you have to implement.
If you don't want to expose its implementation,
then you can define it in the body of meanElements.
(Or as #ph88 pointed out,
it could be as simple as list.reduce(_ + _).)

Related

How to add to a list you're returning?

Sorry if this is a stupid question as I am a total beginner. I have a function factors which looks like this:
def factors (n:Int):List[Int] = {
var xs = List[Int]()
for(i <- 2 to (n-1)) {
if(n%i==0) {xs :+ i}
}
return xs
}
However if I do println(factors(10)) I always get List().
What am I doing wrong?
The :+ operation returns a new List, you never assign it to xs.
def factors (n:Int):List[Int] = {
var xs = List[Int]()
for (i <- 2 to (n - 1)) {
if(n%i==0) {xs = xs :+ i}
}
return xs
}
But, you really shouldn't be using var. We don't like them very much in Scala.
Also don't don't don't use return in Scala. It is a much more loaded keyword than you might think. Read about it here
Here is a better way of doing this.
def factors (n:Int): List[Int] =
for {
i <- (2 to (n - 1)).toList
if (n % i) == 0
} yield i
factors(10)
You don't need .toList either but didn't want to mess with your return types. You are welcome to adjust
Working link: https://scastie.scala-lang.org/haGESfhKRxqDdDIpaHXfpw
You can think of this problem as a filtering operation. You start with all the possible factors and you keep the ones where the remainder when dividing the input by that number is 0. The operation that does this in Scala is filter, which keeps values where a particular test is true and removes the others:
def factors(n: Int): List[Int] =
(2 until n).filter(n % _ == 0).toList
To keep the code short I have also used the short form of a function where _ stands for the argument to the function, so n % _ means n divided by the current number that is being tested.

Getting rid of for loops in Scala

Here is a problem that involves a factorial. For a given number, n, find the answer to the following:
(1 / n!) * (1! + 2! + 3! + ... + n!)
The iterative solution in Scala is very easy – a simple for loop suffices.
object MyClass {
def fsolve(n: Int): Double = {
var a: Double = 1
var cum: Double = 1
for (i <- n to 2 by -1) {
a = a * (1.0/i.toDouble)
cum += a
}
scala.math.floor(cum*1000000) / 1000000
}
def main(args: Array[String]) {
println(fsolve(7)) // answer 1.173214
}
}
I want to get rid of the for loop and use a foldLeft operation. Since the idea is to reduce a list of numbers to a single result, a foldLeft, or a similar instruction ought to do the job. How? I’m struggling to find a good Scala example I can follow. The code below illustrates where I am struggling to make the leap to more idiomatic Scala.
object MyClass {
def fsolve(n: Int) = {
(n to 2 by -1).foldLeft(1.toDouble) (_*_)
// what comes next????
}
def main(args: Array[String]) {
println(fsolve(7))
}
}
Any suggestions or pointers to a solution?
The result is returned from foldLeft, like this:
val cum = (n to 2 by -1).foldLeft(1.toDouble) (_*_)
Only in your case the function needs to be different, as the fold above would multiply all i values together. You will pass both cum and a values for the folding:
def fsolve(n: Int): Double = {
val (cum, _) = (n to 2 by -1).foldLeft(1.0, 1.0) { case ((sum, a),i) =>
val newA = a * (1.0/i.toDouble)
(sum + newA, newA)
}
scala.math.floor(cum*1000000) / 1000000
}
The formula you have provided maps very nicely to the scanLeft function. It works sort of like a combination of foldLeft and map, running the fold operation but storing each generated value in the output list. The following code generates all of the factorials from 1 to n, sums them up, then divides by n!. Note that by performing a single floating point division at the end, instead of at every intermediate step, you reduce the odds of floating point errors.
def fsolve(n: Int): Double =
{
val factorials = (2 to n).scanLeft(1)((cum: Int, value: Int) => value*cum)
scala.math.floor(factorials.reduce(_+_)/factorials.last.toDouble*1000000)/1000000
}
I'll try to implement a solution without filling in the blanks but by proposing a different approach.
def fsolve(n: Int): Double = {
require(n > 0, "n must be positive")
def f(n: Int): Long = (1 to n).fold(1)(_ * _)
(1.0 / f(n)) * ((1 to n).map(f).sum)
}
In the function I make sure to fail for invalid input with require, I define factorial (as f) and then use it by simply writing down the function in the closest possible way to the original expression we wanted to implement:
(1.0 / f(n)) * ((1 to n).map(f).sum)
If you really want to fold explicitly you can rewrite this expression as follows:
(1.0 / f(n)) * ((1 to n).map(f).fold(0L)(_ + _))
Also, please note that since all operations you are executing (sums and multiplications) are commutative, you can use fold instead of foldLeft: using the former doesn't prescribe an order in which operation should run, allowing a specific implementation of the collection to run the computation in parallel.
You can play around with this code here on Scastie.

Scala: Best way to filter & map in one iteration

I'm new to Scala and trying to figure out the best way to filter & map a collection. Here's a toy example to explain my problem.
Approach 1: This is pretty bad since I'm iterating through the list twice and calculating the same value in each iteration.
val N = 5
val nums = 0 until 10
val sqNumsLargerThanN = nums filter { x: Int => (x * x) > N } map { x: Int => (x * x).toString }
Approach 2: This is slightly better but I still need to calculate (x * x) twice.
val N = 5
val nums = 0 until 10
val sqNumsLargerThanN = nums collect { case x: Int if (x * x) > N => (x * x).toString }
So, is it possible to calculate this without iterating through the collection twice and avoid repeating the same calculations?
Could use a foldRight
nums.foldRight(List.empty[Int]) {
case (i, is) =>
val s = i * i
if (s > N) s :: is else is
}
A foldLeft would also achieve a similar goal, but the resulting list would be in reverse order (due to the associativity of foldLeft.
Alternatively if you'd like to play with Scalaz
import scalaz.std.list._
import scalaz.syntax.foldable._
nums.foldMap { i =>
val s = i * i
if (s > N) List(s) else List()
}
The typical approach is to use an iterator (if possible) or view (if iterator won't work). This doesn't exactly avoid two traversals, but it does avoid creation of a full-sized intermediate collection. You then map first and filter afterwards and then map again if needed:
xs.iterator.map(x => x*x).filter(_ > N).map(_.toString)
The advantage of this approach is that it's really easy to read and, since there are no intermediate collections, it's reasonably efficient.
If you are asking because this is a performance bottleneck, then the answer is usually to write a tail-recursive function or use the old-style while loop method. For instance, in your case
def sumSqBigN(xs: Array[Int], N: Int): Array[String] = {
val ysb = Array.newBuilder[String]
def inner(start: Int): Array[String] = {
if (start >= xs.length) ysb.result
else {
val sq = xs(start) * xs(start)
if (sq > N) ysb += sq.toString
inner(start + 1)
}
}
inner(0)
}
You can also pass a parameter forward in inner instead of using an external builder (especially useful for sums).
I have yet to confirm that this is truly a single pass, but:
val sqNumsLargerThanN = nums flatMap { x =>
val square = x * x
if (square > N) Some(x) else None
}
You can use collect which applies a partial function to every value of the collection that it's defined at. Your example could be rewritten as follows:
val sqNumsLargerThanN = nums collect {
case (x: Int) if (x * x) > N => (x * x).toString
}
A very simple approach that only does the multiplication operation once. It's also lazy, so it will be executing code only when needed.
nums.view.map(x=>x*x).withFilter(x => x> N).map(_.toString)
Take a look here for differences between filter and withFilter.
Consider this for comprehension,
for (x <- 0 until 10; v = x*x if v > N) yield v.toString
which unfolds to a flatMap over the range and a (lazy) withFilter onto the once only calculated square, and yields a collection with filtered results. To note one iteration and one calculation of square is required (in addition to creating the range).
You can use flatMap.
val sqNumsLargerThanN = nums flatMap { x =>
val square = x * x
if (square > N) Some(square.toString) else None
}
Or with Scalaz,
import scalaz.Scalaz._
val sqNumsLargerThanN = nums flatMap { x =>
val square = x * x
(square > N).option(square.toString)
}
The solves the asked question of how to do this with one iteration. This can be useful when streaming data, like with an Iterator.
However...if you are instead wanting the absolute fastest implementation, this is not it. In fact, I suspect you would use a mutable ArrayList and a while loop. But only after profiling would you know for sure. In any case, that's for another question.
Using a for comprehension would work:
val sqNumsLargerThanN = for {x <- nums if x*x > N } yield (x*x).toString
Also, I'm not sure but I think the scala compiler is smart about a filter before a map and will only do 1 pass if possible.
I am also beginner did it as follows
for(y<-(num.map(x=>x*x)) if y>5 ) { println(y)}

Matching with custom combinations/operators

I know that you can do matching on lists in a way like
val list = List(1,2,3)
list match {
case head::tail => head
case _ => //whatever
}
so I started to wonder how this works. If I understand correctly, :: is just an operator, so what's to stop me from doing something like
4 match {
case x + 2 => x //I would expect x=2 here
}
If there is a way to create this kind of functionality, how is it done; if not, then why?
Pattern matching takes the input and decomposes it with an unapply function. So in your case, unapply(4) would have to return the two numbers that sum to 4. However, there are many pairs that sum to 4, so the function wouldn't know what to do.
What you need is for the 2 to be accessible to the unapply function somehow. A special case class that stores the 2 would work for this:
case class Sum(addto: Int) {
def unapply(i: Int) = Some(i - addto)
}
val Sum2 = Sum(2)
val Sum2(x) = 5 // x = 3
(It would be nice to be able to do something like val Sum(2)(y) = 5 for compactness, but Scala doesn't allow parameterized extractors; see here.)
[EDIT: This is a little silly, but you could actually do the following too:
val `2 +` = Sum(2)
val `2 +`(y) = 5 // y = 3
]
EDIT: The reason the head::tail thing works is that there is exactly one way to split the head from the tail of a list.
There's nothing inherently special about :: versus +: you could use + if you had a predetermined idea of how you wanted it to break a number. For example, if you wanted + to mean "split in half", then you could do something like:
object + {
def unapply(i: Int) = Some(i-i/2, i/2)
}
and use it like:
scala> val a + b = 4
a: Int = 2
b: Int = 2
scala> val c + d = 5
c: Int = 3
d: Int = 2
EDIT: Finally, this explains that, when pattern matching, A op B means the same thing as op(A,B), which makes the syntax look nice.
Matching with case head :: tail uses an infix operation pattern of the form p1 op p2 which gets translated to op(p1, p2) before doing the actual matching. (See API for ::)
The problem with + is the following:
While it is easy to add an
object + {
def unapply(value: Int): Option[(Int, Int)] = // ...
}
object which would do the matching, you may only supply one result per value. E.g.
object + {
def unapply(value: Int): Option[(Int, Int)] = value match {
case 0 => Some(0, 0)
case 4 => Some(3, 1)
case _ => None
}
Now this works:
0 match { case x + 0 => x } // returns 0
also this
4 match { case x + 1 => x } // returns 3
But this won’t and you cannot change it:
4 match { case x + 2 => x } // does not match
No problem for ::, though, because it is always defined what is head and what is tail of a list.
There are two ::s (pronounced "cons") in Scala. One is the operator on Lists and the other is a class, which represents a non empty list characterized by a head and a tail. So head :: tail is a constructor pattern, which has nothing to do with the operator.

Selection sort in functional Scala

I'm making my way through "Programming in Scala" and wrote a quick implementation of the selection sort algorithm. However, since I'm still a bit green in functional programming, I'm having trouble translating to a more Scala-ish style. For the Scala programmers out there, how can I do this using Lists and vals rather than falling back into my imperative ways?
http://gist.github.com/225870
As starblue already said, you need a function that calculates the minimum of a list and returns the list with that element removed. Here is my tail recursive implementation of something similar (as I believe foldl is tail recursive in the standard library), and I tried to make it as functional as possible :). It returns a list that contains all the elements of the original list (but kindof reversed - see the explanation below) with the minimum as a head.
def minimum(xs: List[Int]): List[Int] =
(List(xs.head) /: xs.tail) {
(ys, x) =>
if(x < ys.head) (x :: ys)
else (ys.head :: x :: ys.tail)
}
This basically does a fold, starting with a list containing of the first element of xs If the first element of xs is smaller than the head of that list, we pre-append it to the list ys. Otherwise, we add it to the list ys as the second element. And so on recursively, we've folded our list into a new list containing the minimum element as a head and a list containing all the elements of xs (not necessarily in the same order) with the minimum removed, as a tail. Note that this function does not remove duplicates.
After creating this helper function, it's now easy to implement selection sort.
def selectionSort(xs: List[Int]): List[Int] =
if(xs.isEmpty) List()
else {
val ys = minimum(xs)
if(ys.tail.isEmpty)
ys
else
ys.head :: selectionSort(ys.tail)
}
Unfortunately this implementation is not tail recursive, so it will blow up the stack for large lists. Anyway, you shouldn't use a O(n^2) sort for large lists, but still... it would be nice if the implementation was tail recursive. I'll try to think of something... I think it will look like the implementation of a fold.
Tail Recursive!
To make it tail recursive, I use quite a common pattern in functional programming - an accumulator. It works a bit backward, as now I need a function called maximum, which basically does the same as minimum, but with the maximum element - its implementation is exact as minimum, but using > instead of <.
def selectionSort(xs: List[Int]) = {
def selectionSortHelper(xs: List[Int], accumulator: List[Int]): List[Int] =
if(xs.isEmpty) accumulator
else {
val ys = maximum(xs)
selectionSortHelper(ys.tail, ys.head :: accumulator)
}
selectionSortHelper(xs, Nil)
}
EDIT: Changed the answer to have the helper function as a subfunction of the selection sort function.
It basically accumulates the maxima to a list, which it eventually returns as the base case. You can also see that it is tail recursive by replacing accumulator by throw new NullPointerException - and then inspect the stack trace.
Here's a step by step sorting using an accumulator. The left hand side shows the list xs while the right hand side shows the accumulator. The maximum is indicated at each step by a star.
64* 25 12 22 11 ------- Nil
11 22 12 25* ------- 64
22* 12 11 ------- 25 64
11 12* ------- 22 25 64
11* ------- 12 22 25 64
Nil ------- 11 12 22 25 64
The following shows a step by step folding to calculate the maximum:
maximum(25 12 64 22 11)
25 :: Nil /: 12 64 22 11 -- 25 > 12, so it stays as head
25 :: 12 /: 64 22 11 -- same as above
64 :: 25 12 /: 22 11 -- 25 < 64, so the new head is 64
64 :: 22 25 12 /: 11 -- and stays so
64 :: 11 22 25 12 /: Nil -- until the end
64 11 22 25 12
You should have problems doing selection sort in functional style, as it is an in-place sort algorithm. In-place, by definition, isn't functional.
The main problem you'll face is that you can't swap elements. Here's why this is important. Suppose I have a list (a0 ... ax ... an), where ax is the minimum value. You need to get ax away, and then compose a list (a0 ... ax-1 ax+1 an). The problem is that you'll necessarily have to copy the elements a0 to ax-1, if you wish to remain purely functional. Other functional data structures, particularly trees, can have better performance than this, but the basic problem remains.
here is another implementation of selection sort (generic version).
def less[T <: Comparable[T]](i: T, j: T) = i.compareTo(j) < 0
def swap[T](xs: Array[T], i: Int, j: Int) { val tmp = xs(i); xs(i) = xs(j); xs(j) = tmp }
def selectiveSort[T <: Comparable[T]](xs: Array[T]) {
val n = xs.size
for (i <- 0 until n) {
val min = List.range(i + 1, n).foldLeft(i)((a, b) => if (less(xs(a), xs(b))) a else b)
swap(xs, i, min)
}
}
You need a helper function which does the selection. It should return the minimal element and the rest of the list with the element removed.
I think it's reasonably feasible to do a selection sort in a functional style, but as Daniel indicated, it has a good chance of performing horribly.
I just tried my hand at writing a functional bubble sort, as a slightly simpler and degenerate case of selection sort. Here's what I did, and this hints at what you could do:
define bubble(data)
if data is empty or just one element: return data;
otherwise, if the first element < the second,
return first element :: bubble(rest of data);
otherwise, return second element :: bubble(
first element :: (rest of data starting at 3rd element)).
Once that's finished recursing, the largest element is at the end of the list. Now,
define bubblesort [data]
apply bubble to data as often as there are elements in data.
When that's done, your data is indeed sorted. Yes, it's horrible, but my Clojure implementation of this pseudocode works.
Just concerning yourself with the first element or two and then leaving the rest of the work to a recursed activity is a lisp-y, functional-y way to do this kind of thing. But once you've gotten your mind accustomed to that kind of thinking, there are more sensible approaches to the problem.
I would recommend implementing a merge sort:
Break list into two sub-lists,
either by counting off half the elements into one sublist
and the rest in the other,
or by copying every other element from the original list
into either of the new lists.
Sort each of the two smaller lists (recursion here, obviously).
Assemble a new list by selecting the smaller from the front of either sub-list
until you've exhausted both sub-lists.
The recursion is in the middle of that, and I don't see a clever way of making the algorithm tail recursive. Still, I think it's O(log-2) in time and also doesn't place an exorbitant load on the stack.
Have fun, good luck!
Thanks for the hints above, they were very inspiring. Here's another functional approach to the selection sort algorithm. I tried to base it on the following idea: finding a max / min can be done quite easily by min(A)=if A=Nil ->Int.MaxValue else min(A.head, min(A.tail)). The first min is the min of a list, the second the min of two numbers. This is easy to understand, but unfortunately not tail recursive. Using the accumulator method the min definition can be transformed like this, now in correct Scala:
def min(x: Int,y: Int) = if (x<y) x else y
def min(xs: List[Int], accu: Int): Int = xs match {
case Nil => accu
case x :: ys => min(ys, min(accu, x))
}
(This is tail recursive)
Now a min version is needed which returns a list leaving out the min value. The following function returns a list whose head is the min value, the tail contains the rest of the original list:
def minl(xs: List[Int]): List[Int] = minl(xs, List(Int.MaxValue))
def minl(xs: List[Int],accu:List[Int]): List[Int] = xs match {
// accu always contains min as head
case Nil => accu take accu.length-1
case x :: ys => minl(ys,
if (x<accu.head) x::accu else accu.head :: x :: accu.tail )
}
Using this selection sort can be written tail recursively as:
def ssort(xs: List[Int], accu: List[Int]): List[Int] = minl(xs) match {
case Nil => accu
case min :: rest => ssort(rest, min::accu)
}
(reverses the order). In a test with 10000 list elements this algorithm is only about 4 times slower than the usual imperative algorithm.
Even though, when coding Scala, I'm used to prefer functional programming style (via combinators or recursion) over imperative style (via variables and iterations), THIS TIME, for this specific problem, old school imperative nested loops result in simpler and more performant code.
I don't think falling back to imperative style is a mistake for certain classes of problems, such as sorting algorithms which usually transform the input buffer in place rather than resulting to a new collection.
My solution is:
package bitspoke.algo
import scala.math.Ordered
import scala.collection.mutable.Buffer
abstract class Sorter[T <% Ordered[T]] {
// algorithm provided by subclasses
def sort(buffer : Buffer[T]) : Unit
// check if the buffer is sorted
def sorted(buffer : Buffer[T]) = buffer.isEmpty || buffer.view.zip(buffer.tail).forall { t => t._2 > t._1 }
// swap elements in buffer
def swap(buffer : Buffer[T], i:Int, j:Int) {
val temp = buffer(i)
buffer(i) = buffer(j)
buffer(j) = temp
}
}
class SelectionSorter[T <% Ordered[T]] extends Sorter[T] {
def sort(buffer : Buffer[T]) : Unit = {
for (i <- 0 until buffer.length) {
var min = i
for (j <- i until buffer.length) {
if (buffer(j) < buffer(min))
min = j
}
swap(buffer, i, min)
}
}
}
As you can see, to achieve parametric polymorphism, rather than using java.lang.Comparable, I preferred scala.math.Ordered and Scala View Bounds rather than Upper Bounds. That's certainly works thanks to Scala Implicit Conversions of primitive types to Rich Wrappers.
You can write a client program as follows:
import bitspoke.algo._
import scala.collection.mutable._
val sorter = new SelectionSorter[Int]
val buffer = ArrayBuffer(3, 0, 4, 2, 1)
sorter.sort(buffer)
assert(sorter.sorted(buffer))
A simple functional program for selection-sort in Scala
def selectionSort(list:List[Int]):List[Int] = {
#tailrec
def selectSortHelper(list:List[Int], accumList:List[Int] = List[Int]()): List[Int] = {
list match {
case Nil => accumList
case _ => {
val min = list.min
val requiredList = list.filter(_ != min)
selectSortHelper(requiredList, accumList ::: List.fill(list.length - requiredList.length)(min))
}
}
}
selectSortHelper(list)
}
You may want to try replacing your while loops with recursion, so, you have two places where you can create new recursive functions.
That would begin to get rid of some vars.
This was probably the toughest lesson for me, trying to move more toward FP.
I hesitate to show solutions here, as I think it would be better for you to try first.
But, if possible you should be using tail-recursion, to avoid problems with stack overflows (if you are sorting a very, very large list).
Here is my point of view on this problem: SelectionSort.scala
def selectionsort[A <% Ordered[A]](list: List[A]): List[A] = {
def sort(as: List[A], bs: List[A]): List[A] = as match {
case h :: t => select(h, t, Nil, bs)
case Nil => bs
}
def select(m: A, as: List[A], zs: List[A], bs: List[A]): List[A] =
as match {
case h :: t =>
if (m > h) select(m, t, h :: zs, bs)
else select(h, t, m :: zs, bs)
case Nil => sort(zs, m :: bs)
}
sort(list, Nil)
}
There are two inner functions: sort and select, which represents two loops in original algorithm. The first function sort iterates through the elements and call select for each of them. When the source list is empty it return bs list as result, which is initially Nil. The sort function tries to search for maximum (not minimum, since we build result list in reversive order) element in source list. It suppose that maximum is head by the default and then just replace it with a proper value.
This is 100% functional implementation of Selection Sort in Scala.
Here is my solution
def sort(list: List[Int]): List[Int] = {
#tailrec
def pivotCompare(p: Int, l: List[Int], accList: List[Int] = List.empty): List[Int] = {
l match {
case Nil => p +: accList
case x :: xs if p < x => pivotCompare(p, xs, accList :+ x)
case x :: xs => pivotCompare(x, xs, accList :+ p)
}
}
#tailrec
def loop(list: List[Int], accList: List[Int] = List.empty): List[Int] = {
list match {
case x :: xs =>
pivotCompare(x, xs) match {
case Nil => accList
case h :: tail => loop(tail, accList :+ h)
}
case Nil => accList
}
}
loop(list)
}