Here is a problem that involves a factorial. For a given number, n, find the answer to the following:
(1 / n!) * (1! + 2! + 3! + ... + n!)
The iterative solution in Scala is very easy – a simple for loop suffices.
object MyClass {
def fsolve(n: Int): Double = {
var a: Double = 1
var cum: Double = 1
for (i <- n to 2 by -1) {
a = a * (1.0/i.toDouble)
cum += a
}
scala.math.floor(cum*1000000) / 1000000
}
def main(args: Array[String]) {
println(fsolve(7)) // answer 1.173214
}
}
I want to get rid of the for loop and use a foldLeft operation. Since the idea is to reduce a list of numbers to a single result, a foldLeft, or a similar instruction ought to do the job. How? I’m struggling to find a good Scala example I can follow. The code below illustrates where I am struggling to make the leap to more idiomatic Scala.
object MyClass {
def fsolve(n: Int) = {
(n to 2 by -1).foldLeft(1.toDouble) (_*_)
// what comes next????
}
def main(args: Array[String]) {
println(fsolve(7))
}
}
Any suggestions or pointers to a solution?
The result is returned from foldLeft, like this:
val cum = (n to 2 by -1).foldLeft(1.toDouble) (_*_)
Only in your case the function needs to be different, as the fold above would multiply all i values together. You will pass both cum and a values for the folding:
def fsolve(n: Int): Double = {
val (cum, _) = (n to 2 by -1).foldLeft(1.0, 1.0) { case ((sum, a),i) =>
val newA = a * (1.0/i.toDouble)
(sum + newA, newA)
}
scala.math.floor(cum*1000000) / 1000000
}
The formula you have provided maps very nicely to the scanLeft function. It works sort of like a combination of foldLeft and map, running the fold operation but storing each generated value in the output list. The following code generates all of the factorials from 1 to n, sums them up, then divides by n!. Note that by performing a single floating point division at the end, instead of at every intermediate step, you reduce the odds of floating point errors.
def fsolve(n: Int): Double =
{
val factorials = (2 to n).scanLeft(1)((cum: Int, value: Int) => value*cum)
scala.math.floor(factorials.reduce(_+_)/factorials.last.toDouble*1000000)/1000000
}
I'll try to implement a solution without filling in the blanks but by proposing a different approach.
def fsolve(n: Int): Double = {
require(n > 0, "n must be positive")
def f(n: Int): Long = (1 to n).fold(1)(_ * _)
(1.0 / f(n)) * ((1 to n).map(f).sum)
}
In the function I make sure to fail for invalid input with require, I define factorial (as f) and then use it by simply writing down the function in the closest possible way to the original expression we wanted to implement:
(1.0 / f(n)) * ((1 to n).map(f).sum)
If you really want to fold explicitly you can rewrite this expression as follows:
(1.0 / f(n)) * ((1 to n).map(f).fold(0L)(_ + _))
Also, please note that since all operations you are executing (sums and multiplications) are commutative, you can use fold instead of foldLeft: using the former doesn't prescribe an order in which operation should run, allowing a specific implementation of the collection to run the computation in parallel.
You can play around with this code here on Scastie.
Related
I'm trying to write a method that calculates the mean of the elements in a given List in Scala. Here's my code:
def meanElements(list: List[Float]): Float = {
list match {
case x :: tail => (x + meanElements(tail))/(list.length)
case Nil => 0
}
}
When I call meanElements(List(10,12,14))), the result I get is different than 12. Can someone help?
You can simply do it using inbuilt functions:
scala> def mean(list:List[Int]):Int =
| if(list.isEmpty) 0 else list.sum/list.size
mean: (list: List[Int])Int
scala> mean(List(10,12,14))
res1: Int = 12
scala>
The formula is not correct, it should be:
case x :: tail => (x + meanElements(tail) * tail.length) / list.length
But this implementation is performing a lot of divisions and multiplications.
It would be better to split the computation of the mean to two steps,
calculating the sum first,
and then dividing by list.length.
That is, something more like this:
def meanElements(list: List[Float]): Float = sum(list) / list.length
Where sum is a helper function you have to implement.
If you don't want to expose its implementation,
then you can define it in the body of meanElements.
(Or as #ph88 pointed out,
it could be as simple as list.reduce(_ + _).)
Suppose I would like to calculate Pi with Monte Carlo simulation as an exercise.
I am writing a function, which picks a point in a square (0, 1), (1, 0) at random and tests if the point is inside the circle.
import scala.math._
import scala.util.Random
def circleTest() = {
val (x, y) = (Random.nextDouble, Random.nextDouble)
sqrt(x*x + y*y) <= 1
}
Then I am writing a function, which takes as arguments the test function and the number of trials and returns the fraction of the trials in which the test was found to be true.
def monteCarlo(trials: Int, test: () => Boolean) =
(1 to trials).map(_ => if (test()) 1 else 0).sum * 1.0 / trials
... and I can calculate Pi
monteCarlo(100000, circleTest) * 4
Now I wonder if monteCarlo function can be improved. How would you write monteCarlo efficient and readable ?
For example, since the number of trials is large is it worth using a view or iterator instead of Range(1, trials) and reduce instead of map and sum ?
It's worth noting that Random.nextDouble is side-effecting—when you call it it changes the state of the random number generator. This may not be a concern to you, but since there are already five answers here I figure it won't hurt anything to add one that's purely functional.
First you'll need a random number generation monad implementation. Luckily NICTA provides a really nice one that's integrated with Scalaz. You can use it like this:
import com.nicta.rng._, scalaz._, Scalaz._
val pointInUnitSquare = Rng.choosedouble(0.0, 1.0) zip Rng.choosedouble(0.0, 1.0)
val insideCircle = pointInUnitSquare.map { case (x, y) => x * x + y * y <= 1 }
def mcPi(trials: Int): Rng[Double] =
EphemeralStream.range(0, trials).foldLeftM(0) {
case (acc, _) => insideCircle.map(_.fold(1, 0) + acc)
}.map(_ / trials.toDouble * 4)
And then:
scala> val choosePi = mcPi(10000000)
choosePi: com.nicta.rng.Rng[Double] = com.nicta.rng.Rng$$anon$3#16dd554f
Nothing's been computed yet—we've just built up a computation that will generate our value randomly when executed. Let's just execute it on the spot in the IO monad for the sake of convenience:
scala> choosePi.run.unsafePerformIO
res0: Double = 3.1415628
This won't be the most performant solution, but it's good enough that it may not be a problem for many applications, and the referential transparency may be worth it.
Stream based version, for another alternative. I think this is quite clear.
def monteCarlo(trials: Int, test: () => Boolean) =
Stream
.continually(if (test()) 1.0 else 0.0)
.take(trials)
.sum / trials
(the sum isn't specialised for streams but the implementation (in TraversableOnce) just calls foldLeft that is specialised and "allows GC to collect along the way." So the .sum won't force the stream to be evaluated and so won't keep all the trials in memory at once)
I see no problem with the following recursive version:
def monteCarlo(trials: Int, test: () => Boolean) = {
def bool2double(b: Boolean) = if (b) 1.0d else 0.0d
#scala.annotation.tailrec
def recurse(n: Int, sum: Double): Double =
if (n <= 0) sum / trials
else recurse(n - 1, sum + bool2double(test()))
recurse(trials, 0.0d)
}
And a foldLeft version, too:
def monteCarloFold(trials: Int, test: () => Boolean) =
(1 to trials).foldLeft(0.0d)((s,i) => s + (if (test()) 1.0d else 0.0d)) / trials
This is more memory efficient than the map version in the question.
Using tail recursion might be an idea:
def recMonteCarlo(trials: Int, currentSum: Double, test:() => Boolean):Double = trials match {
case 0 => currentSum
case x =>
val nextSum = currentSum + (if (test()) 1.0 else 0.0)
recMonteCarlo(trials-1, nextSum, test)
def monteCarlo(trials: Int, test:() => Boolean) = {
val monteSum = recMonteCarlo(trials, 0, test)
monteSum / trials
}
Using aggregate on a parallel collection, like this,
def monteCarlo(trials: Int, test: () => Boolean) = {
val pr = (1 to trials).par
val s = pr.aggregate(0)( (a,_) => a + (if (test()) 1 else 0), _ + _)
s * 4.0 / trials
}
where partial results are summed up in parallel with other test calculations.
I have two arrays (that i have pulled out of a matrix (Array[Array[Int]]) and I need to subtract one from the other.
At the moment I am using this method however, when I profile it, it is the bottleneck.
def subRows(a: Array[Int], b: Array[Int], sizeHint: Int): Array[Int] = {
val l: Array[Int] = new Array(sizeHint)
var i = 0
while (i < sizeHint) {
l(i) = a(i) - b(i)
i += 1
}
l
}
I need to do this billions of times so any improvement in speed is a plus.
I have tried using a List instead of an Array to collect the differences and it is MUCH faster but I lose all benefit when I convert it back to an Array.
I did modify the downstream code to take a List to see if that would help but I need to access the contents of the list out of order so again there is loss of any gains there.
It seems like any conversion of one type to another is expensive and I am wondering if there is some way to use a map etc. that might be faster.
Is there a better way?
EDIT
Not sure what I did the first time!?
So the code I used to test it was this:
def subRowsArray(a: Array[Int], b: Array[Int], sizeHint: Int): Array[Int] = {
val l: Array[Int] = new Array(sizeHint)
var i = 0
while (i < sizeHint) {
l(i) = a(i) - b(i)
i += 1
}
l
}
def subRowsList(a: Array[Int], b: Array[Int], sizeHint: Int): List[Int] = {
var l: List[Int] = Nil
var i = 0
while (i < sizeHint) {
l = a(i) - b(i) :: l
i += 1
}
l
}
val a = Array.fill(100, 100)(scala.util.Random.nextInt(2))
val loops = 30000 * 10000
def runArray = for (i <- 1 to loops) subRowsArray(a(scala.util.Random.nextInt(100)), a(scala.util.Random.nextInt(100)), 100)
def runList = for (i <- 1 to loops) subRowsList(a(scala.util.Random.nextInt(100)), a(scala.util.Random.nextInt(100)), 100)
def optTimer(f: => Unit) = {
val s = System.currentTimeMillis
f
System.currentTimeMillis - s
}
The results I thought I got the first time I did this were the exact opposite... I must have misread or mixed up the methods.
My apologies for asking a bad question.
That code is the fastest you can manage single-threaded using a standard JVM. If you think List is faster, you're either fooling yourself or not actually telling us what you're doing. Putting an Int into List requires two object creations: one to create the list element, and one to box the integer. Object creations take about 10x longer than an array access. So it's really not a winning proposition to do it any other way.
If you really, really need to go faster, and must stay with a single thread, you should probably switch to C++ or the like and explicitly use SSE instructions. See this question, for example.
If you really, really need to go faster and can use multiple threads, then the easiest is to package up a chunk of work like this (i.e. a sensible number of pairs of vectors that need to be subtracted--probably at least a few million elements per chunk) into a list as long as the number of processors on your machine, and then call list.par.map(yourSubtractionRoutineThatActsOnTheChunkOfWork).
Finally, if you can be destructive,
a(i) -= b(i)
in the inner loop is, of course, faster. Likewise, if you can reuse space (e.g. with System.arraycopy), you're better off than if you have to keep allocating it. But that changes the interface from what you've shown.
You can use Scalameter to try a benchmark the two implementations which requires at least JRE 7 update 4 and Scala 2.10 to be run. I used scala 2.10 RC2.
Compile with scalac -cp scalameter_2.10-0.2.jar RangeBenchmark.scala.
Run with scala -cp scalameter_2.10-0.2.jar:. RangeBenchmark.
Here's the code I used:
import org.scalameter.api._
object RangeBenchmark extends PerformanceTest.Microbenchmark {
val limit = 100
val a = new Array[Int](limit)
val b = new Array[Int](limit)
val array: Array[Int] = new Array(limit)
var list: List[Int] = Nil
val ranges = for {
size <- Gen.single("size")(limit)
} yield 0 until size
measure method "subRowsArray" in {
using(ranges) curve("Range") in {
var i = 0
while (i < limit) {
array(i) = a(i) - b(i)
i += 1
}
r => array
}
}
measure method "subRowsList" in {
using(ranges) curve("Range") in {
var i = 0
while (i < limit) {
list = a(i) - b(i) :: list
i += 1
}
r => list
}
}
}
Here's the results:
::Benchmark subRowsArray::
Parameters(size -> 100): 8.26E-4
::Benchmark subRowsList::
Parameters(size -> 100): 7.94E-4
You can draw your own conclusions. :)
The stack blew up on larger values of limit. I'll guess it's because it's measuring the performance many times.
I've looked over a few implementations of Fibonacci function in Scala starting from a very simple one, to the more complicated ones.
I'm not entirely sure which one is the fastest. I'm leaning towards the impression that the ones that uses memoization is faster, however I wonder why Scala doesn't have a native memoization.
Can anyone enlighten me toward the best and fastest (and cleanest) way to write a fibonacci function?
The fastest versions are the ones that deviate from the usual addition scheme in some way. Very fast is the calculation somehow similar to a fast binary exponentiation based on these formulas:
F(2n-1) = F(n)² + F(n-1)²
F(2n) = (2F(n-1) + F(n))*F(n)
Here is some code using it:
def fib(n:Int):BigInt = {
def fibs(n:Int):(BigInt,BigInt) = if (n == 1) (1,0) else {
val (a,b) = fibs(n/2)
val p = (2*b+a)*a
val q = a*a + b*b
if(n % 2 == 0) (p,q) else (p+q,p)
}
fibs(n)._1
}
Even though this is not very optimized (e.g. the inner loop is not tail recursive), it will beat the usual additive implementations.
for me the simplest defines a recursive inner tail function:
def fib: Stream[Long] = {
def tail(h: Long, n: Long): Stream[Long] = h #:: tail(n, h + n)
tail(0, 1)
}
This doesn't need to build any Tuple objects for the zip and is easy to understand syntactically.
Scala does have memoization in the form of Streams.
val fib: Stream[BigInt] = 0 #:: 1 #:: fib.zip(fib.tail).map(p => p._1 + p._2)
scala> fib take 100 mkString " "
res22: String = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 ...
Stream is a LinearSeq so you might like to convert it to an IndexedSeq if you're doing a lot of fib(42) type calls.
However I would question what your use-case is for a fibbonaci function. It will overflow Long in less than 100 terms so larger terms aren't much use for anything. The smaller terms you can just stick in a table and look them up if speed is paramount. So the details of the computation probably don't matter much since for the smaller terms they're all quick.
If you really want to know the results for very big terms, then it depends on whether you just want one-off values (use Landei's solution) or, if you're making a sufficient number of calls, you may want to pre-compute the whole lot. The problem here is that, for example, the 100,000th element is over 20,000 digits long. So we're talking gigabytes of BigInt values which will crash your JVM if you try to hold them in memory. You could sacrifice accuracy and make things more manageable. You could have a partial-memoization strategy (say, memoize every 100th term) which makes a suitable memory / speed trade-off. There is no clear anwser for what is the fastest: it depends on your usage and resources.
This could work. it takes O(1) space O(n) time to calculate a number, but has no caching.
object Fibonacci {
def fibonacci(i : Int) : Int = {
def h(last : Int, cur: Int, num : Int) : Int = {
if ( num == 0) cur
else h(cur, last + cur, num - 1)
}
if (i < 0) - 1
else if (i == 0 || i == 1) 1
else h(1,2,i - 2)
}
def main(args: Array[String]){
(0 to 10).foreach( (x : Int) => print(fibonacci(x) + " "))
}
}
The answers using Stream (including the accepted answer) are very short and idiomatic, but they aren't the fastest. Streams memoize their values (which isn't necessary in iterative solutions), and even if you don't keep the reference to the stream, a lot of memory may be allocated and then immediately garbage-collected. A good alternative is to use an Iterator: it doesn't cause memory allocations, is functional in style, short and readable.
def fib(n: Int) = Iterator.iterate(BigInt(0), BigInt(1)) { case (a, b) => (b, a+b) }.
map(_._1).drop(n).next
A little simpler tail Recursive solution that can calculate Fibonacci for large values of n. The Int version is faster but is limited, when n > 46 integer overflow occurs
def tailRecursiveBig(n :Int) : BigInt = {
#tailrec
def aux(n : Int, next :BigInt, acc :BigInt) :BigInt ={
if(n == 0) acc
else aux(n-1, acc + next,next)
}
aux(n,1,0)
}
This has already been answered, but hopefully you will find my experience helpful. I had a lot of trouble getting my mind around scala infinite streams. Then, I watched Paul Agron's presentation where he gave very good suggestions: (1) implement your solution with basic Lists first, then if you are going to generify your solution with parameterized types, create a solution with simple types like Int's first.
using that approach I came up with a real simple (and for me, easy to understand solution):
def fib(h: Int, n: Int) : Stream[Int] = { h #:: fib(n, h + n) }
var x = fib(0,1)
println (s"results: ${(x take 10).toList}")
To get to the above solution I first created, as per Paul's advice, the "for-dummy's" version, based on simple lists:
def fib(h: Int, n: Int) : List[Int] = {
if (h > 100) {
Nil
} else {
h :: fib(n, h + n)
}
}
Notice that I short circuited the list version, because if i didn't it would run forever.. But.. who cares? ;^) since it is just an exploratory bit of code.
The code below is both fast and able to compute with high input indices. On my computer it returns the 10^6:th Fibonacci number in less than two seconds. The algorithm is in a functional style but does not use lists or streams. Rather, it is based on the equality \phi^n = F_{n-1} + F_n*\phi, for \phi the golden ratio. (This is a version of "Binet's formula".) The problem with using this equality is that \phi is irrational (involving the square root of five) so it will diverge due to finite-precision arithmetics if interpreted naively using Float-numbers. However, since \phi^2 = 1 + \phi it is easy to implement exact computations with numbers of the form a + b\phi for a and b integers, and this is what the algorithm below does. (The "power" function has a bit of optimization in it but is really just iteration of the "mult"-multiplication on such numbers.)
type Zphi = (BigInt, BigInt)
val phi = (0, 1): Zphi
val mult: (Zphi, Zphi) => Zphi = {
(z, w) => (z._1*w._1 + z._2*w._2, z._1*w._2 + z._2*w._1 + z._2*w._2)
}
val power: (Zphi, Int) => Zphi = {
case (base, ex) if (ex >= 0) => _power((1, 0), base, ex)
case _ => sys.error("no negative power plz")
}
val _power: (Zphi, Zphi, Int) => Zphi = {
case (t, b, e) if (e == 0) => t
case (t, b, e) if ((e & 1) == 1) => _power(mult(t, b), mult(b, b), e >> 1)
case (t, b, e) => _power(t, mult(b, b), e >> 1)
}
val fib: Int => BigInt = {
case n if (n < 0) => 0
case n => power(phi, n)._2
}
EDIT: An implementation which is more efficient and in a sense also more idiomatic is based on Typelevel's Spire library for numeric computations and abstract algebra. One can then paraphrase the above code in a way much closer to the mathematical argument (We do not need the whole ring-structure but I think it's "morally correct" to include it). Try running the following code:
import spire.implicits._
import spire.algebra._
case class S(fst: BigInt, snd: BigInt) {
override def toString = s"$fst + $snd"++"φ"
}
object S {
implicit object SRing extends Ring[S] {
def zero = S(0, 0): S
def one = S(1, 0): S
def plus(z: S, w: S) = S(z.fst + w.fst, z.snd + w.snd): S
def negate(z: S) = S(-z.fst, -z.snd): S
def times(z: S, w: S) = S(z.fst * w.fst + z.snd * w.snd
, z.fst * w.snd + z.snd * w.fst + z.snd * w.snd)
}
}
object Fibo {
val phi = S(0, 1)
val fib: Int => BigInt = n => (phi pow n).snd
def main(arg: Array[String]) {
println( fib(1000000) )
}
}
I have following simple code
def fib(i:Long,j:Long):Stream[Long] = i #:: fib(j, i+j)
(0l /: fib(1,1).take(10000000)) (_+_)
And it throws OutOfMemmoryError exception.
I can not understand why, because I think all the parts use constant memmory i.e. lazy evaluation streams and foldLeft...
Those code also don't work
fib(1,1).take(10000000).sum or max, min e.t.c.
How to correctly implement infinite streams and do iterative operations upon it?
Scala version: 2.9.0
Also scala javadoc said, that foldLeft operation is memmory safe for streams
/** Stream specialization of foldLeft which allows GC to collect
* along the way.
*/
#tailrec
override final def foldLeft[B](z: B)(op: (B, A) => B): B = {
if (this.isEmpty) z
else tail.foldLeft(op(z, head))(op)
}
EDIT:
Implementation with iterators still not useful, since it throws ${domainName} exception
def fib(i:Long,j:Long): Iterator[Long] = Iterator(i) ++ fib(j, i + j)
How to define correctly infinite stream/iterator in Scala?
EDIT2:
I don't care about int overflow, I just want to understand how to create infinite stream/iterator etc in scala without side effects .
The reason to use Stream instead of Iterator is so that you don't have to calculate all the small terms in the series over again. But this means that you need to store ten million stream nodes. These are pretty large, unfortunately, so that could be enough to overflow the default memory. The only realistic way to overcome this is to start with more memory (e.g. scala -J-Xmx2G). (Also, note that you're going to overflow Long by an enormous margin; the Fibonacci series increases pretty quickly.)
P.S. The iterator implementation I have in mind is completely different; you don't build it out of concatenated singleton Iterators:
def fib(i: Long, j: Long) = Iterator.iterate((i,j)){ case (a,b) => (b,a+b) }.map(_._1)
Now when you fold, past results can be discarded.
The OutOfMemoryError happens indenpendently from the fact that you use Stream. As Rex Kerr mentioned above, Stream -- unlike Iterator -- stores everything in memory. The difference with List is that the elements of Stream are calculated lazily, but once you reach 10000000, there will be 10000000 elements, just like List.
Try with new Array[Int](10000000), you will have the same problem.
To calculate the fibonacci number as above you may want to use different approach. You can take into account the fact that you only need to have two numbers, instead of the whole fibonacci numbers discovered so far.
For example:
scala> def fib(i:Long,j:Long): Iterator[Long] = Iterator(i) ++ fib(j, i + j)
fib: (i: Long,j: Long)Iterator[Long]
And to get, for example, the index of the first fibonacci number exceeding 1000000:
scala> fib(1, 1).indexWhere(_ > 1000000)
res12: Int = 30
Edit: I added the following lines to cope with the StackOverflow
If you really want to work with 1 millionth fibonacci number, the iterator definition above will not work either for StackOverflowError. The following is the best I have in mind at the moment:
class FibIterator extends Iterator[BigDecimal] {
var i: BigDecimal = 1
var j: BigDecimal = 1
def next = {val temp = i
i = i + j
j = temp
j }
def hasNext = true
}
scala> new FibIterator().take(1000000).foldLeft(0:BigDecimal)(_ + _)
res49: BigDecimal = 82742358764415552005488531917024390424162251704439978804028473661823057748584031
0652444660067860068576582339667553466723534958196114093963106431270812950808725232290398073106383520
9370070837993419439389400053162345760603732435980206131237515815087375786729469542122086546698588361
1918333940290120089979292470743729680266332315132001038214604422938050077278662240891771323175496710
6543809955073045938575199742538064756142664237279428808177636434609546136862690895665103636058513818
5599492335097606599062280930533577747023889877591518250849190138449610994983754112730003192861138966
1418736269315695488126272680440194742866966916767696600932919528743675517065891097024715258730309025
7920682881137637647091134870921415447854373518256370737719553266719856028732647721347048627996967...
#yura's problem:
def fib(i:Long,j:Long):Stream[Long] = i #:: fib(j, i+j)
(0l /: fib(1,1).take(10000000)) (_+_)
besides using a Long which can't possibly hold the Fibonacci of 10,000,000, it does work. That is, if the foldLeft is written as:
fib(1,1).take(10000000).foldLeft(0L)(_+_)
Looking at the Streams.scala source, foldLeft() is clearly designed for Garbage Collection, but /: is not def'd.
The other answers alluded to another problem. The Fibonacci of 10 million is a big number and if BigInt is used, instead of just overflowing like with a Long, absolutely enormous numbers are being added to each over and over again.
Since Stream.foldLeft is optimized for GC it does look like the way to solve for really big Fibonacci numbers, rather than using a zip or tail recursion.
// Fibonacci using BigInt
def fib(i:BigInt,j:BigInt):Stream[BigInt] = i #:: fib(j, i+j)
fib(1,0).take(10000000).foldLeft(BigInt("0"))(_+_)
Results of the above code: 10,000,000 is a 8-figure number. How many figures in fib(10000000)? 2,089,877
fib(1,1).take(10000000) is the "this" of the method /:, it is likely that the JVM will consider the reference alive as long as the method runs, even if in this case, it might get rid of it.
So you keep a reference on the head of the stream all along, hence on the whole stream as you build it to 10M elements.
You could just use recursion, which is about as simple:
def fibSum(terms: Int, i: Long = 1, j: Long = 1, total: Long = 2): Long = {
if (terms == 2) total
else fibSum(terms - 1, j, i + j, total + i + j)
}
With this, you can "fold" a billion elements in only a couple of seconds, but as Rex points out, summing the Fibbonaci sequence overflows Long very quickly.
If you really wanted to know the answer to your original problem and don't mind sacrificing some accuracy you could do this:
def fibSum(terms: Int, i: Double = 1, j: Double = 1, tot: Double = 2,
exp: Int = 0): String = {
if (terms == 2) "%.6f".format(tot) + " E+" + exp
else {
val (i1, j1, tot1, exp1) =
if (tot + i + j > 10) (i/10, j/10, tot/10, exp + 1)
else (i, j, tot, exp)
fibSum(terms - 1, j1, i1 + j1, tot1 + i1 + j1, exp1)
}
}
scala> fibSum(10000000)
res54: String = 2.957945 E+2089876