Group sums of an attribute by the values of another array attribute - mongodb

I have a collection "tagsCount" that looks like that:
{
"_id" : ObjectId("59e3a46a48507851d411ad78"),
"tags" : [ "Marketing" ],
"cpt" : 14354
},
{
"_id" : ObjectId("59e3a46a48507851d411ad79"),
"tags" : [
"chatbot",
"Content marketing",
"Intelligence artificielle",
"Marketing digital",
"Personnalisation"
],
"cpt" : 9037
}
Of course there are many more lines.
I want to get the sum of "cpt" grouped by the values of "tags".
I have come up with that:
db.tagsCount.aggregate([
{ "$project": { "tags":1 }},
{ "$unwind": "$tags"},
{ "$group": {
"_id" : "$tags",
cpt : "$cpt" ,
"count": { "$sum": "$cpt" }
}}
])
But that doesn't do the trick, I have the list of all different tags and the count have a value a 0.
Is it possible to do what I want?

The problem is that your aggregation pipeline starts with $project which selects only tags to the next stages and that's why you're executing $group on documents without cpt. Here's my working example:
db.tagsCount.aggregate([
{ "$unwind": "$tags"},
{ "$group": {
"_id": "$tags",
"count": { "$sum": "$cpt" }
}},
{ "$project": { "tag": "$_id", "_id": 0, "count": 1 }}
])

Related

mongodb $aggregate empty array and multiple documents

mongodb has below document:
> db.test.find({name:{$in:["abc","abc2"]}})
{ "_id" : 1, "name" : "abc", "scores" : [ ] }
{ "_id" : 2, "name" : "abc2", "scores" : [ 10, 20 ] }
I want get scores array length for each document, how should I do?
Tried below command:
db.test.aggregate({$match:{name:"abc2"}}, {$unwind: "$scores"}, {$group: {_id:null, count:{$sum:1}}} )
Result:
{ "_id" : null, "count" : 2 }
But below command:
db.test.aggregate({$match:{name:"abc"}}, {$unwind: "$scores"}, {$group: {_id:null, count:{$sum:1}}} )
Return Nothing. Question:
How should I get each lenght of scores in 2 or more document in one
command?
Why the result of second command return nothing? and how
should I check if the array is empty?
So this is actually a common problem. The result of the $unwind phase in an aggregation pipeline where the array is "empty" is to "remove" to document from the pipeline results.
In order to return a count of "0" for such an an "empty" array then you need to do something like the following.
In MongoDB 2.6 or greater, just use $size:
db.test.aggregate([
{ "$match": { "name": "abc" } },
{ "$group": {
"_id": null,
"count": { "$sum": { "$size": "$scores" } }
}}
])
In earlier versions you need to do this:
db.test.aggregate([
{ "$match": { "name": "abc" } },
{ "$project": {
"name": 1,
"scores": {
"$cond": [
{ "$eq": [ "$scores", [] ] },
{ "$const": [false] },
"$scores"
]
}
}},
{ "$unwind": "$scores" },
{ "$group": {
"_id": null,
"count": { "$sum": {
"$cond": [
"$scores",
1,
0
]
}}
}}
])
The modern operation is simple since $size will just "measure" the array. In the latter case you need to "replace" the array with a single false value when it is empty to avoid $unwind "destroying" this for an "empty" statement.
So replacing with false allows the $cond "trinary" to choose whether to add 1 or 0 to the $sum of the overall statement.
That is how you get the length of "empty arrays".
To get the length of scores in 2 or more documents you just need to change the _id value in the $group pipeline which contains the distinct group by key, so in this case you need to group by the document _id.
Your second aggregation returns nothing because the $match query pipeline passed a document which had an empty scores array. To check if the array is empty, your match query should be
{'scores.0': {$exists: true}} or {scores: {$not: {$size: 0}}}
Overall, your aggregation should look like this:
db.test.aggregate([
{ "$match": {"scores.0": { "$exists": true } } },
{ "$unwind": "$scores" },
{
"$group": {
"_id": "$_id",
"count": { "$sum": 1 }
}
}
])

Mongodb aggregate collection

I'm learning aggregate in mongodb. I'm working with the collection:
{
"body" : ""
,
"email" : "oJJFLCfA#qqlBNdpY.com",
"author" : "Linnie Weigel"
},
{
"body" : ""
,
"email" : "ptHfegMX#WgxhlEeV.com",
"author" : "Dinah Sauve"
},
{
"body" : ""
,
"email" : "kfPmikkG#SBxfJifD.com",
"author" : "Zachary Langlais"
}
{
"body" : ""
,
"email" : "gqEMQEYg#iiBqZCez.com",
"author" : "Jesusa Rickenbacker"
}
]
I try to obtain the number of body of each author. But when I execute the command sum of aggregate mongodb, the result is 1(because the structure has only one element) . How can I do this operation?. I tried with $addToSet. But I don't know how to obtain each element of collection and to do the operation.
In order to count the comments by each author you want to $group by that author and $sum the occurrences. Basically just a "$sum: 1" operation. But it seems like you have "comments" as an array here based on your own comments and the closing bracket on your partial data listing. For that you need to process with $unwind first:
db.collection.aggregate([
{ "$unwind": "$comments" },
{ "$group": {
"_id": "$comments.author",
"count": { "$sum": 1 }
}}
])
That will obtain the total of all author comments by author for the entire collection. If you were just after getting the total comments by author per document ( or what looks like a blog post model ) then you use the document _id as part of the group statement:
db.collection.aggregate([
{ "$unwind": "$comments" },
{ "$group": {
"_id": {
"_id": "$_id"
"author": "$comments.author"
},
"count": { "$sum": 1 }
}}
])
And if you then want the summary of author counts per document with just a single document returned with all the authors in an array, then use $addToSet from here, with another $group pipeline stage:
db.collection.aggregate([
{ "$unwind": "$comments" },
{ "$group": {
"_id": {
"_id": "$_id"
"author": "$comments.author"
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": "$_id._id",
"comments": {
"$addToSet": {
"author": "$_id.author",
"count": "$count"
}
}
}}
])
But really, the author values are already unique and "sets" are not ordered in any way, so you might change this using $push after first introducing a $sort to have the list ordered by the number of comments made:
db.collection.aggregate([
{ "$unwind": "$comments" },
{ "$group": {
"_id": {
"_id": "$_id"
"author": "$comments.author"
},
"count": { "$sum": 1 }
}},
{ "$sort": { "_id._id": 1, "count": -1 } },
{ "$group": {
"_id": "$_id._id",
"comments": {
"$push": {
"author": "$_id.author",
"count": "$count"
}
}
}}
])

Aggregate Query in Mongodb returns specific field

Document Sample:
{
"_id" : ObjectId("53329dfgg43771e49538b4567"),
"u" : {
"_id" : ObjectId("532a435gs4c771edb168c1bd7"),
"n" : "Salman khan",
"e" : "salman#gmail.com"
},
"ps" : 0,
"os" : 1,
"rs" : 0,
"cd" : 1395685800,
"ud" : 0
}
Query:
db.collectiontmp.aggregate([
{$match: {os:1}},
{$project : { name:{$toUpper:"$u.e"} , _id:0 } },
{$group: { _id: "$u._id",total: {$sum:1} }},
{$sort: {total: -1}}, { $limit: 10 }
]);
I need following things from the above query:
Group by u._id
Returns total number of records and email from the record, as shown below:
{
"result":
[
{
"email": "",
"total": ""
},
{
"email": "",
"total": ""
}
],
"ok":
1
}
The first thing you are doing wrong here is not understanding how $project is intended to work. Pipeline stages such as $project and $group will only output the fields that are "explicitly" identified. So only the fields you say to output will be available to the following pipeline stages.
Specifically here you "project" only part of the "u" field in your document and you therefore removed the other data from being available. The only present field here now is "name", which is the one you "projected".
Perhaps it was really your intention to do something like this:
db.collectiontmp.aggregate([
{ "$group": {
"_id": {
"_id": "$u._id",
"email": { "$toUpper": "$u.e" }
},
"total": { "$sum": 1 },
}},
{ "$project": {
"_id": 0,
"email": "$_id.email",
"total": 1
}},
{ "$sort": { "total": -1 } },
{ "$limit": 10 }
])
Or even:
db.collectiontmp.aggregate([
{ "$group": {
"_id": "$u._id",
"email": { "$first": { "$toUpper": "$u.e" } }
"total": { "$sum": 1 },
}},
{ "$project": {
"_id": 0,
"email": 1,
"total": 1
}},
{ "$sort": { "total": -1 } },
{ "$limit": 10 }
])
That gives you the sort of output you are looking for.
Remember that as this is a "pipeline", then only the "output" from a prior stage is available to the "next" stage. There is no "global" concept of the document as this is not a declarative statement such as in SQL, but a "pipeline".
So think Unix pipe "|" command, or otherwise look that up. Then your thinking will fall into place.

Mongodb aggregation, finding within an array of values

I have a schemea that creates documents using the following structure:
{
"_id" : "2014-07-16:52TEST",
"date" : ISODate("2014-07-16T23:52:59.811Z"),
"name" : "TEST"
"values" : [
[
1405471921000,
0.737121
],
[
1405471922000,
0.737142
],
[
1405471923000,
0.737142
],
[
1405471924000,
0.737142
]
]
}
In the values, the first index is a timestamp. What I'm trying to do is query a specific timestamp to find the closest value ($gte).
I've tried the following aggregate query:
[
{ "$match": {
"values": {
"$elemMatch": { "0": {"$gte": 1405471923000} }
},
"name" : 'TEST'
}},
{ "$project" : {
"name" : 1,
"values" : 1
}},
{ "$unwind": "$values" },
{ "$match": { "values.0": { "$gte": 1405471923000 } } },
{ "$limit" : 1 },
{ "$sort": { "values.0": -1 } },
{ "$group": {
"_id": "$name",
"values": { "$push": "$values" },
}}
]
This seems to work, but it doesn't pull the closest value. It seems to pull anything greater or equal to and the sort doesn't seem to get applied, so it will pull a timestamp that is far in the future.
Any suggestions would be great!
Thank you
There are a couple of things wrong with the approach here even though it is a fair effort. You are right that you need to $sort here, but the problem is that you cannot "sort" on an inner element with an array. In order to get a value that can be sorted you must $unwind the array first as it otherwise will not sort on an array position.
You also certainly do not want $limit in the pipeline. You might be testing this against a single document, but "limit" will actually act on the entire set of documents in the pipeline. So if more than one document was matching your condition then they would be thrown away.
The key thing you want to do here is use $first in your $group stage, which is applied once you have sorted to get the "closest" element that you want.
db.collection.aggregate([
// Documents that have an array element matching the condition
{ "$match": {
"values": { "$elemMatch": { "0": {"$gte": 1405471923000 } } }
}},
// Unwind the top level array
{ "$unwind": "$values" },
// Filter just the elements that match the condition
{ "$match": { "values.0": { "$gte": 1405471923000 } } },
// Take a copy of the inner array
{ "$project": {
"date": 1,
"name": 1,
"values": 1,
"valCopy": "$values"
}},
// Unwind the inner array copy
{ "$unwind": "$valCopy" },
// Filter the inner elements
{ "$match": { "valCopy": { "$gte": 1405471923000 } }},
// Sort on the now "timestamp" values ascending for nearest
{ "$sort": { "valCopy": 1 } },
// Take the "first" values
{ "$group": {
"_id": "$_id",
"date": { "$first": "$date" },
"name": { "$first": "$name" },
"values": { "$first": "$values" },
}},
// Optionally push back to array to match the original structure
{ "$group": {
"_id": "$_id",
"date": { "$first": "$date" },
"name": { "$first": "$name" },
"values": { "$push": "$values" },
}}
])
And this produces your document with just the "nearest" timestamp value matching the original document form:
{
"_id" : "2014-07-16:52TEST",
"date" : ISODate("2014-07-16T23:52:59.811Z"),
"name" : "TEST",
"values" : [
[
1405471923000,
0.737142
]
]
}

mongodb get filtered count

I have no extended knowledge on how to create mongodb queries, but I wanted to ask how could I query collection get something like this:
{
Total: 1000,
Filtered: 459,
DocumentArray: []
}
Of course doing that in one query, so I do not need to do something like this:
db.collection.find();
db.collection.find().count();
db.colection.count();
Well you could do something along these lines:
Considering documents like this:
{ "_id" : ObjectId("531251829df82824bdb53578"), "name" : "a", "type" : "b" }
{ "_id" : ObjectId("531251899df82824bdb53579"), "name" : "a", "type" : "c" }
{ "_id" : ObjectId("5312518e9df82824bdb5357a"), "type" : "c", "name" : "b" }
And an aggregate pipeline like this:
db.collection.aggregate([
{ "$group": {
"_id": null,
"totalCount": { "$sum": 1 },
"docs": { "$push": {
"name": "$name",
"type": "$type"
}},
}},
{ "$unwind": "$docs" },
{ "$match": { "docs.name": "a" } },
{ "$group": {
"_id": null,
"totalCount": { "$first": "$totalCount" },
"filteredCount": { "$sum": 1 },
"docs": { "$push": "$docs" }
}}
])
But I would not recommend it. It will certainly blow up on any "real" collection due to exceeding the maximum BSON document size. And I would doubt it would be performing very well. But that is how it can be done, even if the utility is purely academic.
Just do what you are doing if you need the information. That is the "right way" to do it.