Underscore usage for eta expansion - scala

scala> val names = List("Peter", "Paul", "Mary")
names: List[String] = List(Peter, Paul, Mary)
scala> names.map(_.toUpperCase)
res12: List[String] = List(PETER, PAUL, MARY)
In this case, the underscore represents the only input argument, which is the element of names. This string is implicitly converted to StringOps and toUpperCase is invoked.
However, this does not work:
scala> names.map(StringOps.toUpperCase _)
<console>:14: error: value toUpperCase is not a member of object scala.collection.immutable.StringOps
names.map(StringOps.toUpperCase _)
I thought that this syntax is how I would get a reference to the function from the toUpperCase method.

First of all, there is no implicit conversion for _.toUppercase that convert String to StringOps, Since toUppercase is belong to String type, it's unnecessary convert to StringOps.
so for _.toUppercase is actual expand to high order function: val a: String => String = (str: String) => str.toUpperCase.
and StringOps implicit conversion defined in Predef.scala: augmentString, and this conversion only will occur when used StringOps's method, like: slice, stripSuffix, stripPrefix etc, for Example:
"name".slice(0, 2) // convert "name" to new StringOps("name").slice(0,2)
"name".stringPrefix

StringOps is a class, hence to use its method you'll need to instantiate an instance:
names.map( x => (new StringOps(x)).toUpperCase )
Or
names.map( new StringOps(_) toUpperCase )

StringOps is a wrapper class of the String class which means that it "enriches" this class with additional methods like the one you are using.
When you want to call a method on a string instance, you simply do:
instanceName.methodName
This is exactly what you are doing in your first example.
However, in your second example you are doing the following:
methodName(instanceName)
toUpperCase does not take an argument, it is called on the instance of the string itself.

Related

Function type, function value and function object in scala

I am new in scala and reading Programming in scala. I find the terms function type, function value and function objects in various pages in the book. For instance:
For instance, where other languages might have objects and functions as two different concepts, in Scala a function value is an object. Function types are classes that can be inherited by subclasses.
Can you please explain function type, function value and function objects and the differences between them? Also what does the above quote mean?
Let me start with non-function type, value and object.
scala> val foo:String = "bar"
foo: String = bar
Here, type is String, value is bar and object instance is foo. Note that, value is essentially an object of type String. For example, (just to get the idea between value and object):
scala> val foo_copy = foo
foo_copy: String = bar
Here, object foo is assigned to foo_copy. Since foo is object in above case, it is a value for object foo_copy.
Now, let me come to function example:
In scala, function is a value and you can assign it to variable.
scala> val foo: (String, String) => String = (a:String, b:String) => a + b
foo: (String, String) => String = <function2>
Here, function type is (String, String) => String (take 2 string parameter and return value of type string) and expression (a:String, b:String) => a + b is a function literal which is compiled into a class and then it is instantiated at runtime as function value. In code above, <function2> is a function value which is essentially an object. Note, don't confuse function value with value that you get from this function invocation.
Finally, foo is a function object of type (String, String) => String and here as well both function object and function value are same. Note that, function value is instance of some class that extends to FunctionN traits. That means:
type: (String, String) => String = Function2[String, String] //2 - number of parameter
Therefore, a class can extends to a function type. class A extends ((String, String) => String) is actually translated to class A extends Function2[String, String] by Scala. Furthermore, a function type can be used as parameter type in function and these functions are higher ordered functions.
In Scala functions are no different from "ordinary" values.
val inc: Int => Int = x => x + 1
is the same concept as
val s: String = "hello world"
For any val x: T = e, x is the name of the value whose type is T, and x is the result of evaluating e.
inc is a value/object just like s is a value/object. I think value and object are essentially the same thing here.
val f: Int => String = i.toString
f is a value that holds a reference to a function, I guess it could be called a function value.
Int => String is a function type, a type that corresponds to a function from integer to string.
f is also an object (I've never read function object), you can for instance call f.toString and f.hashCode, like you would on any other object.
Practically, a Scala programmer only needs to know the following three rules to use functions and function values properly:
Methods defined by def and function literals defined by => are functions. It is defined in page 143, Chapter 8 in the book of Programming in Scala, 4th edition.
Function values are objects that can be passed around as any values. Function literals and partially applied functions are function values.
You can leave off the underscore of a partially applied function if a function value is required at a point in the code. For example: someNumber.foreach(println)
In the Programming in Scala book, object and value are used interchangeably. Therefore, function value and function object are the same thing.

Trying to skip implicit parameter list

I'd like to call a function returned by a function with an implicit parameter, simply and elegantly. This doesn't work:
def resolveA(implicit a: A): String => String = { prefix =>
s"$prefix a=$a"
}
case class A(n: Int)
implicit val a = A(1)
println(resolveA("-->")) // won't compile
I've figured out what's going on: Scala sees the ("-->") and thinks it's an attempt to explicitly fill in the implicit parameter list. I want to pass that as the prefix argument, but Scala sees it as the a argument.
I've tried some alternatives, like putting an empty parameter list () before the implicit one, but so far I've always been stopped by the fact that Scala thinks the argument to the returned function is an attempt to fill in the implicit parameter list of resolveA.
What's a nice way to do what I'm trying to do here, even if it's not as nice as the syntax I tried above?
Another option would be to use the apply method of the String => String function returned by resolveA. This way the compiler won't confuse the parameter lists, and is a little shorter than writing implicltly[A].
scala> resolveA[A].apply("-->")
res3: String = --> a=A(1)

Strange implicit def with function parameter behaviour in Scala

I've written a simple code in Scala with implicit conversion of Function1 to some case class.
object MyApp extends App{
case class FunctionContainer(val function:AnyRef)
implicit def cast(function1: Int => String):FunctionContainer = new FunctionContainer(function1)
def someFunction(i:Int):String = "someString"
def abc(f : FunctionContainer):String = "abc"
println(abc(someFunction))
}
But it doesn't work. Compiler doesn't want to pass someFunction as an argument to abc. I can guess its reasons but don't know exactly why it doesn't work.
When you use a method name as you have, the compiler has to pick how to convert the method type to a value. If the expected type is a function, then it eta-expands; otherwise it supplies empty parens to invoke the method. That is described here in the spec.
But it wasn't always that way. Ten years ago, you would have got your function value just by using the method name.
The new online spec omits the "Change Log" appendix, so for the record, here is the moment when someone got frustrated with parens and introduced the current rules. (See Scala Reference 2.9, page 181.)
This has not eliminated all irksome anomalies.
Conversions
The rules for implicit conversions of methods to functions (§6.26) have been tightened. Previously, a parameterized method used as a value was always implicitly converted to a function. This could lead to unexpected results when method arguments were forgotten. Consider for instance the statement below:
show(x.toString)
where show is defined as follows:
def show(x: String) = Console.println(x)
Most likely, the programmer forgot to supply an empty argument list () to toString. The previous Scala version would treat this code as a partially applied method, and expand it to:
show(() => x.toString())
As a result, the address of a closure would be printed instead of the value of s. Scala version 2.0 will apply a conversion from partially applied method to function value only if the expected type of the expression is indeed a function type. For instance, the conversion would not be applied in the code above because the expected type of show’s parameter is String, not a function type. The new convention disallows some previously legal code. Example:
def sum(f: int => double)(a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)
val sumInts = sum(x => x) // error: missing arguments
The partial application of sum in the last line of the code above will not be converted to a function type. Instead, the compiler will produce an error message which states that arguments for method sum are missing. The problem can be fixed by providing an expected type for the partial application, for instance by annotating the definition of sumInts with its type:
val sumInts: (int, int) => double = sum(x => x) // OK
On the other hand, Scala version 2.0 now automatically applies methods with empty parameter lists to () argument lists when necessary. For instance, the show expression above will now be expanded to
show(x.toString())
Your someFunction appears as a method here.
You could try either
object MyApp extends App{
case class FunctionContainer(val function:AnyRef)
implicit def cast(function1: Int => String):FunctionContainer = new FunctionContainer(function1)
val someFunction = (i:Int) => "someString"
def abc(f : FunctionContainer):String = "abc"
println(abc(someFunction))
}
or
object MyApp extends App{
case class FunctionContainer(val function:AnyRef)
implicit def cast(function1: Int => String):FunctionContainer = new FunctionContainer(function1)
def someFunction(i:Int): String = "someString"
def abc(f : FunctionContainer):String = "abc"
println(abc(someFunction(_: Int)))
}
By the way: implicitly casting such common functions to something else can quickly lead to problems. Are you absolutely sure that you need this? Wouldn't it be easier to overload abc?
You should use eta-expansion
println(abc(someFunction _))

Scala: how do I access a Class[?0] type?

As Daniel suggests, I omitted a lot of information, so here's what I'm trying to do:
I just have a POJO like class
class MyDataObj(val a:String, val b:Boolean)
and I want to transform an instance of it in a SQL insert statement. I was suggested to use this snippet:
val o = new MyDataObj("word", false)
val attributes = o.getClass.getDeclaredMethods.filter { _.getReturnType != Void.TYPE
}.map {
method => (method.getName, method.getReturnType, method.invoke(o))
}
that returns a Array like this:
Array[(String, Class[?0], Object) forSome { type ?0 }] = Array((a,class java.lang.String,word))
I cannot figure out how to access to the type between the brackets of Class in order to evaluate how to build my SQL statement: in case of Class[String] I need to enclose the third element of the tuple in quotes, in case of Class[int] or Class[boolean] I just need to return the value as String with no enclosure.
Hope it is enough clear now.
You are barking at the wrong tree. :)
The method return type is Class[_] -- a Class whose type parameter may be anything, but you do not need to know the type parameter: the class is what you want! You can just get its string representation, for example:
scala> attributes(0)._2.toString
res3: String = boolean
scala> attributes(1)._2.toString
res4: String = class java.lang.String
Or you can get the canonical name:
scala> attributes(0)._2.getCanonicalName
res7: String = boolean
scala> attributes(1)._2.getCanonicalName
res8: String = java.lang.String

Understanding implicit in Scala

I was making my way through the Scala playframework tutorial and I came across this snippet of code which had me puzzled:
def newTask = Action { implicit request =>
taskForm.bindFromRequest.fold(
errors => BadRequest(views.html.index(Task.all(), errors)),
label => {
Task.create(label)
Redirect(routes.Application.tasks())
}
)
}
So I decided to investigate and came across this post.
I still don't get it.
What is the difference between this:
implicit def double2Int(d : Double) : Int = d.toInt
and
def double2IntNonImplicit(d : Double) : Int = d.toInt
other than the obvious fact they have different method names.
When should I use implicit and why?
I'll explain the main use cases of implicits below, but for more detail see the relevant chapter of Programming in Scala.
Implicit parameters
The final parameter list on a method can be marked implicit, which means the values will be taken from the context in which they are called. If there is no implicit value of the right type in scope, it will not compile. Since the implicit value must resolve to a single value and to avoid clashes, it's a good idea to make the type specific to its purpose, e.g. don't require your methods to find an implicit Int!
example:
// probably in a library
class Prefixer(val prefix: String)
def addPrefix(s: String)(implicit p: Prefixer) = p.prefix + s
// then probably in your application
implicit val myImplicitPrefixer = new Prefixer("***")
addPrefix("abc") // returns "***abc"
Implicit conversions
When the compiler finds an expression of the wrong type for the context, it will look for an implicit Function value of a type that will allow it to typecheck. So if an A is required and it finds a B, it will look for an implicit value of type B => A in scope (it also checks some other places like in the B and A companion objects, if they exist). Since defs can be "eta-expanded" into Function objects, an implicit def xyz(arg: B): A will do as well.
So the difference between your methods is that the one marked implicit will be inserted for you by the compiler when a Double is found but an Int is required.
implicit def doubleToInt(d: Double) = d.toInt
val x: Int = 42.0
will work the same as
def doubleToInt(d: Double) = d.toInt
val x: Int = doubleToInt(42.0)
In the second we've inserted the conversion manually; in the first the compiler did the same automatically. The conversion is required because of the type annotation on the left hand side.
Regarding your first snippet from Play:
Actions are explained on this page from the Play documentation (see also API docs). You are using
apply(block: (Request[AnyContent]) ⇒ Result): Action[AnyContent]
on the Action object (which is the companion to the trait of the same name).
So we need to supply a Function as the argument, which can be written as a literal in the form
request => ...
In a function literal, the part before the => is a value declaration, and can be marked implicit if you want, just like in any other val declaration. Here, request doesn't have to be marked implicit for this to type check, but by doing so it will be available as an implicit value for any methods that might need it within the function (and of course, it can be used explicitly as well). In this particular case, this has been done because the bindFromRequest method on the Form class requires an implicit Request argument.
WARNING: contains sarcasm judiciously! YMMV...
Luigi's answer is complete and correct. This one is only to extend it a bit with an example of how you can gloriously overuse implicits, as it happens quite often in Scala projects. Actually so often, you can probably even find it in one of the "Best Practice" guides.
object HelloWorld {
case class Text(content: String)
case class Prefix(text: String)
implicit def String2Text(content: String)(implicit prefix: Prefix) = {
Text(prefix.text + " " + content)
}
def printText(text: Text): Unit = {
println(text.content)
}
def main(args: Array[String]): Unit = {
printText("World!")
}
// Best to hide this line somewhere below a pile of completely unrelated code.
// Better yet, import its package from another distant place.
implicit val prefixLOL = Prefix("Hello")
}
In scala implicit works as:
Converter
Parameter value injector
Extension method
There are some uses of Implicit
Implicitly type conversion : It converts the error producing assignment into intended type
val x :String = "1"
val y:Int = x
String is not the sub type of Int , so error happens in line 2. To resolve the error the compiler will look for such a method in the scope which has implicit keyword and takes a String as argument and returns an Int .
so
implicit def z(a:String):Int = 2
val x :String = "1"
val y:Int = x // compiler will use z here like val y:Int=z(x)
println(y) // result 2 & no error!
Implicitly receiver conversion: We generally by receiver call object's properties, eg. methods or variables . So to call any property by a receiver the property must be the member of that receiver's class/object.
class Mahadi{
val haveCar:String ="BMW"
}
class Johnny{
val haveTv:String = "Sony"
}
val mahadi = new Mahadi
mahadi.haveTv // Error happening
Here mahadi.haveTv will produce an error. Because scala compiler will first look for the haveTv property to mahadi receiver. It will not find. Second it will look for a method in scope having implicit keyword which take Mahadi object as argument and returns Johnny object. But it does not have here. So it will create error. But the following is okay.
class Mahadi{
val haveCar:String ="BMW"
}
class Johnny{
val haveTv:String = "Sony"
}
val mahadi = new Mahadi
implicit def z(a:Mahadi):Johnny = new Johnny
mahadi.haveTv // compiler will use z here like new Johnny().haveTv
println(mahadi.haveTv)// result Sony & no error
Implicitly parameter injection: If we call a method and do not pass its parameter value, it will cause an error. The scala compiler works like this - first will try to pass value, but it will get no direct value for the parameter.
def x(a:Int)= a
x // ERROR happening
Second if the parameter has any implicit keyword it will look for any val in the scope which have the same type of value. If not get it will cause error.
def x(implicit a:Int)= a
x // error happening here
To slove this problem compiler will look for a implicit val having the type of Int because the parameter a has implicit keyword.
def x(implicit a:Int)=a
implicit val z:Int =10
x // compiler will use implicit like this x(z)
println(x) // will result 10 & no error.
Another example:
def l(implicit b:Int)
def x(implicit a:Int)= l(a)
we can also write it like-
def x(implicit a:Int)= l
Because l has a implicit parameter and in scope of method x's body, there is an implicit local variable(parameters are local variables) a which is the parameter of x, so in the body of x method the method-signature l's implicit argument value is filed by the x method's local implicit variable(parameter) a implicitly.
So
def x(implicit a:Int)= l
will be in compiler like this
def x(implicit a:Int)= l(a)
Another example:
def c(implicit k:Int):String = k.toString
def x(a:Int => String):String =a
x{
x => c
}
it will cause error, because c in x{x=>c} needs explicitly-value-passing in argument or implicit val in scope.
So we can make the function literal's parameter explicitly implicit when we call the method x
x{
implicit x => c // the compiler will set the parameter of c like this c(x)
}
This has been used in action method of Play-Framework
in view folder of app the template is declared like
#()(implicit requestHreader:RequestHeader)
in controller action is like
def index = Action{
implicit request =>
Ok(views.html.formpage())
}
if you do not mention request parameter as implicit explicitly then you must have been written-
def index = Action{
request =>
Ok(views.html.formpage()(request))
}
Extension Method
Think, we want to add new method with Integer object. The name of the method will be meterToCm,
> 1 .meterToCm
res0 100
to do this we need to create an implicit class within a object/class/trait . This class can not be a case class.
object Extensions{
implicit class MeterToCm(meter:Int){
def meterToCm={
meter*100
}
}
}
Note the implicit class will only take one constructor parameter.
Now import the implicit class in the scope you are wanting to use
import Extensions._
2.meterToCm // result 200
Why and when you should mark the request parameter as implicit:
Some methods that you will make use of in the body of your action have an implicit parameter list like, for example, Form.scala defines a method:
def bindFromRequest()(implicit request: play.api.mvc.Request[_]): Form[T] = { ... }
You don't necessarily notice this as you would just call myForm.bindFromRequest() You don't have to provide the implicit arguments explicitly. No, you leave the compiler to look for any valid candidate object to pass in every time it comes across a method call that requires an instance of the request. Since you do have a request available, all you need to do is to mark it as implicit.
You explicitly mark it as available for implicit use.
You hint the compiler that it's "OK" to use the request object sent in by the Play framework (that we gave the name "request" but could have used just "r" or "req") wherever required, "on the sly".
myForm.bindFromRequest()
see it? it's not there, but it is there!
It just happens without your having to slot it in manually in every place it's needed (but you can pass it explicitly, if you so wish, no matter if it's marked implicit or not):
myForm.bindFromRequest()(request)
Without marking it as implicit, you would have to do the above. Marking it as implicit you don't have to.
When should you mark the request as implicit? You only really need to if you are making use of methods that declare an implicit parameter list expecting an instance of the Request. But to keep it simple, you could just get into the habit of marking the request implicit always. That way you can just write beautiful terse code.
Also, in the above case there should be only one implicit function whose type is double => Int. Otherwise, the compiler gets confused and won't compile properly.
//this won't compile
implicit def doubleToInt(d: Double) = d.toInt
implicit def doubleToIntSecond(d: Double) = d.toInt
val x: Int = 42.0
I had the exact same question as you had and I think I should share how I started to understand it by a few really simple examples (note that it only covers the common use cases).
There are two common use cases in Scala using implicit.
Using it on a variable
Using it on a function
Examples are as follows
Using it on a variable. As you can see, if the implicit keyword is used in the last parameter list, then the closest variable will be used.
// Here I define a class and initiated an instance of this class
case class Person(val name: String)
val charles: Person = Person("Charles")
// Here I define a function
def greeting(words: String)(implicit person: Person) = person match {
case Person(name: String) if name != "" => s"$name, $words"
case _ => "$words"
}
greeting("Good morning") // Charles, Good moring
val charles: Person = Person("")
greeting("Good morning") // Good moring
Using it on a function. As you can see, if the implicit is used on the function, then the closest type conversion method will be used.
val num = 10 // num: Int (of course)
// Here I define a implicit function
implicit def intToString(num: Int) = s"$num -- I am a String now!"
val num = 10 // num: Int (of course). Nothing happens yet.. Compiler believes you want 10 to be an Int
// Util...
val num: String = 10 // Compiler trust you first, and it thinks you have `implicitly` told it that you had a way to covert the type from Int to String, which the function `intToString` can do!
// So num is now actually "10 -- I am a String now!"
// console will print this -> val num: String = 10 -- I am a String now!
Hope this can help.
A very basic example of Implicits in scala.
Implicit parameters:
val value = 10
implicit val multiplier = 3
def multiply(implicit by: Int) = value * by
val result = multiply // implicit parameter wiil be passed here
println(result) // It will print 30 as a result
Note: Here multiplier will be implicitly passed into the function multiply. Missing parameters to the function call are looked up by type in the current scope meaning that code will not compile if there is no implicit variable of type Int in the scope.
Implicit conversions:
implicit def convert(a: Double): Int = a.toInt
val res = multiply(2.0) // Type conversions with implicit functions
println(res) // It will print 20 as a result
Note: When we call multiply function passing a double value, the compiler will try to find the conversion implicit function in the current scope, which converts Int to Double (As function multiply accept Int parameter). If there is no implicit convert function then the compiler will not compile the code.