Any alternative to BPMN and DMN notations for describing business logic? - drools

I am looking for some tool capable of creating complex process of data manipulation which can be more or less easily modified by people who do not write code.
For example, my task is:
fetch data from sourceA
2.1 if data is full - filter it by condition 45
2.2 if data is not full - fetch additional data from source B
if result passes validation - return 1, otherwise 0
This should be described in some readable manner, best option is if one can modify this process in some UI tool.
What are the requirements?
Each process consists of two parts: steps, and a way to arrange them in a sequence.
(1)
The process in each step should be able to
1. emit commands for fetching some data from data-sources and inserting this into process context
2. filter, enrich, transform datasets obtained
Thus each step of this process should be described with some more or less simple DSL.
(2)
The selection of the step to go, i.e. the consequence of steps should be described by some visual tool, or again, as in (1), with some simple dsl.
Can you advise something for this typical, from my point of view, task?
Meanwhile, here are my own ideas.
First think comes to mind is BPMN combined with Drools.
For steps I may use DRL rules: they can make only basic data manipulation themselves, but I can call Java functions from them if I need something complicated.
For steps consequence I may use standart BPMN diagramm.
Mat be, there is something better?

The combination of BPMN with DMN would allow you indeed to describe with these visual standards, the execution of the process and decision logic to be applied, in order to achieve what in the "For example" paragraph.
In order to make it fully accessible by the business people, the BPMN task for fetching the data or performing any interaction with external system, should be prepared in advance and made available during the composition of the BPMN/DMN diagrams.
Alternatively to BPMN+DMN combination, you can look into Fuse or Fuse Online, it cannot describe all the semantics of the BPMN+DMN combination, but with Fuse Online for instance you can fully visually implement the steps you described in the "For example" paragraph.

Related

How to implement Featuretools into my ML Process?

I am exploring the possibility of implementing Featuretools into my pipeline, to be able to create new features from my Df.
Currently I am using a GridSearchCV, with a Pipeline embedded inside it. Since Featuretools is creating new features with aggregation on columns, like STD(column) etc, I feel like it is suspectible to data leakage. In their FAQ, they are giving an example approach to tackle it, which is not suitable for a Pipeline structure I am using.
Idea 0: I would love to integrate it directly into my Pipeline but it seems like not compatible with Pipelines. It would use fold train data to construct features, transform fold test data. K times. At the end, it would use whole data to construct, during Refit= True stage of GridSearchCV. If you have any example opposed to this fact, you are very welcome.
Idea 1: I can switch to a manual CV structure, not embedded into pipeline. And inside it, I can use Train data to construct new features, and test data to transform with these. It will work K times. At the end, all data can be used to construct Ultimate model.
It is the safest option, with time and complexity disadvantages.
Idea 2: Using it with whole data, ignore the leakage possibility. I am not in favor of this of course. But when I look at Project Github page, all the examples are combining Train and Test data, creating these features with whole data. Then go on with Train-Test division for modeling.
https://github.com/Featuretools/predict-taxi-trip-duration/blob/master/NYC%20Taxi%203%20-%20Simple%20Featuretools.ipynb
Actually if the developers of the project think like that, I could give it a chance with whole data.
What do you think, I would love to hear about your experiences on FeatureTools.

machine learning and code generator from strings

The problem: Given a set of hand categorized strings (or a set of ordered vectors of strings) generate a categorize function to categorize more input. In my case, that data (or most of it) is not natural language.
The question: are there any tools out there that will do that? I'm thinking of some kind of reasonably polished, download, install and go kind of things, as opposed to to some library or a brittle academic program.
(Please don't get stuck on details as the real details would restrict answers to less generally useful responses AND are under NDA.)
As an example of what I'm looking at; the input I'm wanting to filter is computer generated status strings pulled from logs. Error messages (as an example) being filtered based on who needs to be informed or what action needs to be taken.
Doing Things Manually
If the error messages are being generated automatically and the list of exceptions behind the messages is not terribly large, you might just want to have a table that directly maps each error message type to the people who need to be notified.
This should make it easy to keep track of exactly who/which-groups will be getting what types of messages and to update the routing of messages should you decide that some of the messages are being misdirected.
Typically, a small fraction of the types of errors make up a large fraction of error reports. For example, Microsoft noticed that 80% of crashes were caused by 20% of the bugs in their software. So, to get something useful, you wouldn't even need to start with a complete table covering every type of error message. Instead, you could start with just a list that maps the most common errors to the right person and routes everything else to a person for manual routing. Each time an error is routed manually, you could then add an entry to the routing table so that errors of that type are handled automatically in the future.
Document Classification
Unless the error messages are being editorialized by people who submit them and you want to use this information when routing them, I wouldn't recommend treating this as a document classification task. However, if this is what you want to do, here's a list of reasonably good packages for document document classification organized by programming language:
Python - To do this using the Python based Natural Language Toolkit (NLTK), see the Document Classification section in the freely available NLTK book.
Ruby - If Ruby is more of your thing, you can use the Classifier gem. Here's sample code that detects whether Family Guy quotes are funny or not-funny.
C# - C# programmers can use nBayes. The project's home page has sample code for a simple spam/not-spam classifier.
Java - Java folks have Classifier4J, Weka, Lucene Mahout, and as adi92 mentioned Mallet.
Learning Rules with Weka - If rules are what you want, Weka might be of particular interest, since it includes a rule set based learner. You'll find a tutorial on using Weka for text categorization here.
Mallet has a bunch of classifiers which you can train and deploy entirely from the commandline
Weka is nice too because it has a huge number of classifiers and preprocessors for you to play with
Have you tried spam or email filters? By using text files that have been marked with appropriate categories, you should be able to categorize further text input. That's what those programs do, anyway, but instead of labeling your outputs a 'spam' and 'not spam', you could do other categories.
You could also try something involving AdaBoost for a more hands-on approach to rolling your own. This library from Google looks promising, but probably doesn't meet your ready-to-deploy requirements.

Rules Based Database Engine

I would like to design a rules based database engine within Oracle for PeopleSoft Time entry application. How do I do this?
A rules-based system needs several key components:
- A set of rules defined as data
- A set of uniform inputs on which to operate
- A rules executor
- Supervisor hierarchy
Write out a series of use-cases - what might someone be trying to accomplish using the system?
Decide on what things your rules can take as inputs, and what as outputs
Describe the rules from your use-cases as a series of data, and thus determine your rule format. Expand 2 as necessary for this.
Create the basic rule executor, and test that it will take the rule data and process it correctly
Extend the above to deal with multiple rules with different priorities
Learn enough rule engine theory and graph theory to understand common rule-based problems - circularity, conflicting rules etc - and how to use (node) graphs to find cases of them
Write a supervisor hierarchy that is capable of managing the ruleset and taking decisions based on the possible problems above. This part is important, because it is your protection against foolishness on the part of the rule creators causing runtime failure of the entire system.
Profit!
Broadly, rules engines are an exercise in managing complexity. If you don't manage it, you can easily end up with rules that cascade from each other causing circular loops, race-conditions and other issues. It's very easy to construct these accidentally: consider an email program which you have told to move mail from folder A to B if it contains the magic word 'beta', and from B to A if it contains the word 'alpha'. An email with both would be shuttled back and forward until something broke, preventing all other rules from being processed.
I have assumed here that you want to learn about the theory and build the engine yourself. alphazero raises the important suggestion of using an existing rules engine library, which is wise - this is the kind of subject that benefits from academic theory.
I haven't tried this myself, but an obvious approach is to use Java procedures in the Oracle database, and use a Java rules engine library in that code.
Try:
http://www.oracle.com/technology/tech/java/jsp/index.html
http://www.oracle.com/technology/tech/java/java_db/pdf/TWP_AppDev_Java_DB_Reduce_your_Costs_and%20_Extend_your_Database_10gR1_1113.PDF
and
http://www.jboss.org/drools/
or
http://www.jessrules.com/
--
Basically you'll need to capture data events (inserts, updates, deletes), map to them to your rulespace's events, and apply rules.

Tools or programming libraries to visualize custom logic

I am looking for tools to aid in the visualization of custom business logic used to perform document generation. The logic is expressed as an object-oriented model consisting of a graph of decision points and rendering actions. The basic building blocks are relatively simple, but the overall decision tree is quite large and complex making it hard to visualize.
We are looking for suggestions on tools and/or graphing libraries that can be used to visually represent the decision tree and rendering actions. The choice of programming language is not critical (Delphi, C#, Java would be great) and we are able to easily extract the logic to XML or other data format as required. The preference is for something that will run under Windows and enable printing or PDF output of portions of the resulting diagram.
Requirements
Decision points can be simple yes/no or multiple outputs e.g. (yes, not, sometimes, always etc).
The decision points are linked to external business logic that exist elsewhere in the runtime environment. We need to label the graph node with the type of decision point (e.g. boolean) and string describing the business rule being used.
Rendering actions are linked to named content objects with optional merge variables and inline rendering logic. At a minimum we need to be able to label nodes with the name of the element and ideally also information about variables used to render the content.
We have considered building something around Visio or WinGraphViz, or perhaps using a third-party graphing/flowchart library. Any ideas or pointers would be greatly appreciated.
After some more digging I found WinGraphViz and DotXML to be the closest match to my requirements. I was previously unaware of the "record" element which allows me to render decisions in the logic flow in a clean and legible manner.
You can consider Morphir with the Elm frontend.
It is a solid tool for business logic modeling, and code generation.
Visualization is coming along as well.

Do you create your own code generators?

The Pragmatic Programmer advocates the use of code generators.
Do you create code generators on your projects? If yes, what do you use them for?
In "Pragmatic Programmer" Hunt and Thomas distinguish between Passive and Active code generators.
Passive generators are run-once, after which you edit the result.
Active generators are run as often as desired, and you should never edit the result because it will be replaced.
IMO, the latter are much more valuable because they approach the DRY (don't-repeat-yourself) principle.
If the input information to your program can be split into two parts, the part that changes seldom (A) (like metadata or a DSL), and the part that is different each time the program is run (B)(the live input), you can write a generator program that takes only A as input, and writes out an ad-hoc program that only takes B as input.
(Another name for this is partial evaluation.)
The generator program is simpler because it only has to wade through input A, not A and B. Also, it does not have to be fast because it is not run often, and it doesn't have to care about memory leaks.
The ad-hoc program is faster because it's not having to wade through input that is almost always the same (A). It is simpler because it only has to make decisions about input B, not A and B.
It's a good idea for the generated ad-hoc program to be quite readable, so you can more easily find any errors in it. Once you get the errors removed from the generator, they are gone forever.
In one project I worked on, a team designed a complex database application with a design spec two inches thick and a lengthy implementation schedule, fraught with concerns about performance. By writing a code generator, two people did the job in three months, and the source code listings (in C) were about a half-inch thick, and the generated code was so fast as to not be an issue. The ad-hoc program was regenerated weekly, at trivial cost.
So active code generation, when you can use it, is a win-win. And, I think it's no accident that this is exactly what compilers do.
Code generators if used widely without correct argumentation make code less understandable and decrease maintainability (the same with dynamic SQL by the way). Personally I'm using it with some of ORM tools, because their usage here mostly obvious and sometimes for things like searcher-parser algorithms and grammatic analyzers which are not designed to be maintained "by hands" lately. Cheers.
In hardware design, it's fairly common practice to do this at several levels of the 'stack'. For instance, I wrote a code generator to emit Verilog for various widths, topologies, and structures of DMA engines and crossbar switches, because the constructs needed to express this parameterization weren't yet mature in the synthesis and simulation tool flows.
It's also routine to emit logical models all the way down to layout data for very regular things that can be expressed and generated algorithmically, like SRAM, cache, and register file structures.
I also spent a fair bit of time writing, essentially, a code generator that would take an XML description of all the registers on a System-on-Chip, and emit HTML (yes, yes, I know about XSLT, I just found emitting it programatically to be more time-effective), Verilog, SystemVerilog, C, Assembly etc. "views" of that data for different teams (front-end and back-end ASIC design, firmware, documentation, etc.) to use (and keep them consistent by virtue of this single XML "codebase"). Does that count?
People also like to write code generators for e.g. taking terse descriptions of very common things, like finite state machines, and mechanically outputting more verbose imperative language code to implement them efficiently (e.g. transition tables and traversal code).
We use code generators for generating data entity classes, database objects (like triggers, stored procs), service proxies etc. Anywhere you see lot of repititive code following a pattern and lot of manual work involved, code generators can help. But, you should not use it too much to the extend that maintainability is a pain. Some issues also arise if you want to regenerate them.
Tools like Visual Studio, Codesmith have their own templates for most of the common tasks and make this process easier. But, it is easy to roll out on your own.
It is often useful to create a code generator that generates code from a specification - usually one that has regular tabular rules. It reduces the chance of introducing an error via a typo or omission.
Yes ,
I developed my own code generator for AAA protocol Diameter (RFC 3588).
It could generate structures and Api's for diameter messages reading from an XML file that described diameter application's grammar.
That greatly reduced the time to develop complete diameter interface (such as SH/CX/RO etc.).
in my opinion a good programming language would not need code generators because introspection and runtime code generation would be part of language e.g. in python metaclasses and new module etc.
code generators usually generate more unmanageable code in long term usage.
however, if it is absolutely imperative to use a code generator (eclipse VE for swing development is what I use at times) then make sure you know what code is being generated. Believe me, you wouldn't want code in your application that you are not familiar with.
Writing own generator for project is not efficient. Instead, use a generator such as T4, CodeSmith and Zontroy.
T4 is more complex and you need to know a .Net programming language. You have to write your template line by line and you have to complete data relational operations on your own. You can use it over Visual Studio.
CodeSmith is an functional tool and there are plenty of templates ready to use. It is based on T4 and writing your own temlate takes too much time as it is in T4. There is a trial and a commercial version.
Zontroy is a new tool with a user friendly user interface. It has its own template language and is easy to learn. There is an online template market and it is developing. Even you can deliver templates and sell them online over market.
It has a free and a commercial version. Even the free version is enough to complete a medium-scale project.
there might be a lot of code generators out there , however I always create my own to make the code more understandable and suit the frameworks and guidelines we are using
We use a generator for all new code to help ensure that coding standards are followed.
We recently replaced our in-house C++ generator with CodeSmith. We still have to create the templates for the tool, but it seems ideal to not have to maintain the tool ourselves.
My most recent need for a generator was a project that read data from hardware and ultimately posted it to a 'dashboard' UI. In-between were models, properties, presenters, events, interfaces, flags, etc. for several data points. I worked up the framework for a couple data points until I was satisfied that I could live with the design. Then, with the help of some carefully placed comments, I put the "generation" in a visual studio macro, tweaked and cleaned the macro, added the datapoints to a function in the macro to call the generation - and saved several tedious hours (days?) in the end.
Don't underestimate the power of macros :)
I am also now trying to get my head around CodeRush customization capabilities to help me with some more local generation requirements. There is powerful stuff in there if you need on-the-fly decision making when generating a code block.
I have my own code generator that I run against SQL tables. It generates the SQL procedures to access the data, the data access layer and the business logic. It has done wonders in standardising my code and naming conventions. Because it expects certain fields in the database tables (such as an id column and updated datetime column) it has also helped standardise my data design.
How many are you looking for? I've created two major ones and numerous minor ones. The first of the major ones allowed me to generate programs 1500 line programs (give or take) that had a strong family resemblance but were attuned to the different tables in a database - and to do that fast, and reliably.
The downside of a code generator is that if there's a bug in the code generated (because the template contains a bug), then there's a lot of fixing to do.
However, for languages or systems where there is a lot of near-repetitious coding to be done, a good (enough) code generator is a boon (and more of a boon than a 'doggle').
In embedded systems, sometimes you need a big block of binary data in the flash. For example, I have one that takes a text file containing bitmap font glyphs and turns it into a .cc/.h file pair declaring interesting constants (such as first character, last character, character width and height) and then the actual data as a large static const uint8_t[].
Trying to do such a thing in C++ itself, so the font data would auto-generate on compilation without a first pass, would be a pain and most likely illegible. Writing a .o file by hand is out of the question. So is breaking out graph paper, hand encoding to binary, and typing all that in.
IMHO, this kind of thing is what code generators are for. Never forget that the computer works for you, not the other way around.
BTW, if you use a generator, always always always include some lines such as this at both the start and end of each generated file:
// This code was automatically generated from Font_foo.txt. DO NOT EDIT THIS FILE.
// If there's a bug, fix the font text file or the generator program, not this file.
Yes I've had to maintain a few. CORBA or some other object communication style of interface is probably the general thing that I think of first. You have object definitions that are provided to you by the interface you are going to talk over but you still have to build those objects up in code. Building and running a code generator is a fairly routine way of doing that. This can become a fairly lengthy compile just to support some legacy communication channel, and since there is a large tendency to put wrappers around CORBA to make it simpler, well things just get worse.
In general if you have a large amount of structures, or just rapidly changing structures that you need to use, but you can't handle the performance hit of building objects through metadata, then your into writing a code generator.
I can't think of any projects where we needed to create our own code generators from scratch but there are several where we used preexisting generators. (I have used both Antlr and the Eclipse Modeling Framework for building parsers and models in java for enterprise software.) The beauty of using a code generator that someone else has written is that the authors tend to be experts in that area and have solved problems that I didn't even know existed yet. This saves me time and frustration.
So even though I might be able to write code that solves the problem at hand, I can generate the code a lot faster and there is a good chance that it will be less buggy than anything I write.
If you're not going to write the code, are you going to be comfortable with someone else's generated code?
Is it cheaper in both time and $$$ in the long run to write your own code or code generator?
I wrote a code generator that would build 100's of classes (java) that would output XML data from database in a DTD or schema compliant manner. The code generation was generally a one time thing and the code would then be smartened up with various business rules etc. The output was for a rather pedantic bank.
Code generators are work-around for programming language limitations. I personally prefer reflection instead of code generators but I agree that code generators are more flexible and resulting code obviously faster during runtime. I hope, future versions of C# will include some kind of DSL environment.
The only code generators that I use are webservice parsers. I personally stay away from code generators because of the maintenance problems for new employees or a separate team after hand off.
I write my own code generators, mainly in T-SQL, which are called during the build process.
Based on meta-model data, they generate triggers, logging, C# const declarations, INSERT/UPDATE statements, data model information to check whether the app is running on the expected database schema.
I still need to write a forms generator for increased productivity, more specs and less coding ;)
I've created a few code generators. I had a passive code generator for SQL Stored procedures which used templates. This generated generated 90% of our stored procedures.
Since we made the switch to Entity Framework I've created an active codegenerator using T4 (Text Template Transformation Toolkit) inside visual studio. I've used it to create basic repository partial classes for our entities. Works very nicely and saves a bunch of coding. I also use T4 for decorating the entity classes with certain Attributes.
I use code generation features provided by EMF - Eclipse Modeling Framework.
Code generators are really useful in many cases, especially when mapping from one format to another. I've done code generators for IDL to C++, database tables to OO types, and marshalling code just to name a few.
I think the point the authors are trying to make is that if you're a developer you should be able to make the computer work for you. Generating code is just one obvious task to automate.
I once worked with a guy who insisted that he would do our IDL to C++ mapping manually. In the beginning of the project he was able to keep up, because the rest of us were trying to figure out what to do, but eventually he became a bottleneck. I did a code generator in Perl and then we could pretty much do his "work" in a few minutes.
See our "universal" code generator based on program transformations.
I'm the architect and a key implementer.
It is worth noting that a significant fraction of this generator, is generated using this generator.
We uses Telosys code generator in our projects : http://www.telosys.org/
We have created it to reduce the development duration in recurrent tasks like CRUD screens, documentation, etc...
For us the most important thing is to be able to customize the generator's templates, in order to create new generation targets if necessary and to customize existing templates. That's why we have also created a template editor (for Velocity .vm files).
It works fine for Java/Spring/AngularJS code generator and can be adapt for other targets (PHP, C#, Python, etc )